
Model Theory and AI: Results in Query Learning of Automata and

Weighted Model Counting

by

Kevin Huan Zhou
B.S., Carnegie Mellon University, 2018

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Mathematics

in the Graduate College of the
University of Illinois at Chicago, 2024

Chicago, Illinois

Defense Committee:
James Freitag, Chair and Advisor
John Baldwin
Joel (Ronnie) Nagloo
György Turán
Caroline Terry, The Ohio State University

Copyright by

Kevin Huan Zhou

2024

Soli Deo gloria

iii

ACKNOWLEDGMENT

First and foremost, I would like to thank my advisor, James Freitag, for his support and

guidance throughout my years as a graduate student. The ideas for the projects contained in

this thesis originated from him, and he has also provided me with valuable advice and guidance

on many non-mathematical aspects of academic life, such as suggestions for conferences and

workshops to attend and tips for the paper submission process. I also want to thank him for

providing travel support on several occasions and for his recommendations to be supported by

the NSF RTG in Algebraic and Arithmetic Geometry at UIC as well as the NSF TRIPODS

Institute at UIC.

Thanks are also due to the many people with whom I’ve had the chance to discuss my

work and related topics, whether at length or just in passing, including but not limited to John

Baldwin, Artem Chernikov, Matthew Harrison-Trainor, Ronnie Nagloo, Lev Reyzin, Caroline

Terry, Gyor̈gy Turán, and Guy van den Broeck. In particular, special thanks goes to John

Baldwin, Ronnie Nagloo, Caroline Terry, and Györy Turán for serving on my thesis defense

committee.

Math is best done in the company of others, and I must thank many of my fellow graduate

students for their friendship throughout the years. Of particular importance is the wonderful

community of logic graduate students at UIC and around the world—thank you for being kind,

welcoming, collaborative, and a lot of fun to crack logic jokes with.

iv

ACKNOWLEDGMENT (Continued)

Special thanks is due to my community at Church of the Beloved. I would not have been

able to make it through these six years without their constant fellowship and prayers. Of chief

note are Pastor Abe and Suzette Lee, for being steadfast sources of leadership and stability

through many uncertain times, and Eugenia Kang, for keeping the church running through so

many ups and downs and for providing heaps of support and guidance during my time on staff.

An acknowledgements section would not be complete without thanks to family. To Mom,

Dad, and Jason, thank you for your constant and unwavering love and support in all areas of

life.

KHZ

v

TABLE OF CONTENTS

CHAPTER PAGE

I INTRODUCTION . 1
I.1 Query learning of automata . 1
I.2 Weighted model counting . 4
I.3 The model theoretic perspective 8

II PRELIMINARIES . 12
II.1 Basic Notation . 12
II.2 First-order logic . 12
II.3 Query learning . 15
II.4 Automata theory . 20
II.5 Weighted Model Counting . 21
II.6 Hereditary properties . 25

III QUERY LEARNING OF ADVICE AND NOMINAL AUTOMATA 26
III.1 Introduction . 26
III.2 Learning advice DFAs . 28
III.2.1 Overview of advice DFAs . 28
III.2.2 Learning bound for advice DFAs 30
III.3 Learning nominal DFAs . 33
III.3.1 Overview of nominal sets and DFAs 33
III.3.2 Auxiliary results on nominal sets and G-languages 41
III.3.3 Littlestone dimension of nominal DFAs 52
III.3.4 Consistency dimension of nominal DFAs 55
III.3.5 Learning bound for nominal DFAs 61

IV HEREDITARY PROPERTIES AND WEIGHTED FIRST-ORDER
MODEL COUNTING . 62
IV.1 Introduction . 62
IV.2 Strictly r-ary relations . 64
IV.3 Weighted model counting for exponential growth rate classes 68
IV.4 Weighted model counting for minimal fast-growth classes . . . 74
IV.5 The FO2 Case . 77
IV.5.1 Unweighted counting dichotomy for FO2 79
IV.5.2 Weighted model counting for FO2 83

CITED LITERATURE . 96

vi

TABLE OF CONTENTS (Continued)

CHAPTER PAGE

VITA . 102

vii

LIST OF FIGURES

FIGURE PAGE
1 A binary element tree of height 2 . 17
2 An infinite automaton . 33
3 A finitary representation of an infinite automaton 34

viii

SUMMARY

In this thesis, we study two connections between model theory and AI. These two areas may

at first seem fairly unrelated—model theory generally concerns itself with studying infinite (and

often uncountable) structures, which tends to lie outside the realm of tractable computation.

On the other hand, AI is highly concerned with tractable and efficient computation, especially

in the now popular area of machine learning. However, a major recent trend of understanding

dividing lines in model theory have led to many fruitful applications outside of model theory.

The first connection we study is in computational learning theory, specifically in query

learning of various forms of automata, which is the content of Chapter III. Query learning is a

setting of machine learning in which a learner interactively submits queries to an oracle, and uses

the answers to those queries to attempt to identify some unknown target function. The query

learning setting is particulary well suited for learning automata, since a common appliation is to

understand the behavior of a real-world black-box system that is modeled by some automaton.

Queries can be simulated by interacting with the system and observing the outputs. The study

of query learning of automata was initated by Angluin in 1987 with the introduction of the L∗

algorithm that learns DFAs (2), which has since been extended to many other generalizations of

DFAs. More recently, Chase and Freitag introduced an alternative general-purpose method for

proving bounds on the number of queries needed to learn via various combinatorial measures of

complexity, and apply this method to the setting of DFAs to obtain qualitatively different results

compared to Angluin’s algorithm (19). Our work applies this method to two generalizations

ix

SUMMARY (Continued)

of DFAs, advice DFAs and nominal DFAs. We give the first known query learning bounds for

advice DFAs, and give qualitatively different results for nominal DFAs compared to previous

results.

The second connection we study is in weighted model counting, which is the content of

Chapter IV. In particular, we study the weighted first-order model counting problem, which is

to determine the weighted sum of all models of a given first-order sentence or theory in a finite

relational language over a fixed domain. Weighted first-order model counting has applications

in statistical relational learning and probabilistic databases, and can also be seen as a gener-

alization of the SAT problem from computational complexity theory. Prior work has mainly

focused on developing computational complexity guarantees on calculating the weighted model

count of various restricted classes of sentences. A related problem that has been extensively

studied in combinatorics is that of counting the number of structures in hereditary properties of

various combinatorial objects. A hereditary property is a class of combinatorial objects which

is defined by a universal sentence or theory. The main goal in this line of research is to clas-

sify the possible asymptotic growth rates of hereditary properties, and Laskowski and Terry

prove a classification into four possible asymptotic growth rates for hereditary properties of

L-structures, where L is a finite relational language (36). Our work focuses on understanding

how these two distinct approaches to similar problems interact with each other.

x

CHAPTER I

INTRODUCTION

Mathematical logic and artificial intelligence have a long history of interplay dating back

to the earliest efforts to formalize computation by Church and Turing. In this thesis, we

investigate two areas in which modern model theory interacts with AI. The first interaction

is in computational learning theory, specifically in query learning of automata. We study this

interaction in Chapter III. It is adapted from a paper that will appear in ATVA 2024. The

second interaction is in weighted model counting, a problem with applications in statistical

relational learning and probabilistic databases. We study this interaction in Chapter IV. It is

based on work for a paper currently in preparation.

I.1 Query learning of automata

Learning various forms of automata with queries is a long-studied field with many applica-

tions, including in automatic verification and model checking. The basic question in the area is

the following: given some black-box system that is modeled by an automaton, can we deduce

the underlying model simply by interacting with the system and observing the input-output

behavior? These interactions are formalized using queries that are posed to an oracle; two

common queries that are considered are equivalence and membership queries. In essence, an

equivalence query is a hypothesis which the learner tests against the system being learned, and

if the hypothesis is incorrect, the learner observes a counterexample (i.e. an input for which the

1

2

hypothesis and the actual system give differing outputs). On the other hand, a membership

query is an input that is fed to the system for which the output is observed. The amount

of interactivity available when attempting to learn real-world systems makes query learning a

natural setting for learning automata.

This field was initiated by Angluin in 1987 with the introduction of the L∗ algorithm that

learns deterministic finite automata (DFAs) using a polynomially bounded number of equiva-

lence and membership queries (2). Historically, the study of query learning of automata has

centered around adapting Angluin’s L∗ algorithm to different settings, such as such as tree au-

tomata (51), nondeterministic finite automata (14), ω-automata (4), symbolic automata (23),

and fully-ordered lattice automata (25). More recently, Chase and Freitag introduced an alter-

native general-purpose method for proving bounds on the number of queries needed to learn.

Their approach involves computing the Littlestone dimension and consistency dimension of the

concept classes in question. These notions of dimension are combinatorial complexity measures

studied in computational learning theory, but are also closely related to important notions in

model theory. We include a discussion of these connections in Section I.3.

Chase and Freitag’s method of obtaining query learning bounds via Littlestone and con-

sistency dimension is especially effective for automata since many types of automata exhibit

a version of the Myhill-Nerode theorem, a characterization of regular languages by a syntatic

property of the language. The conditions imposed by the Myhill-Nerode characterization turn

out to be useful in finding a bound for the consistency dimension. For example, Chase and Fre-

itag apply this method to regular languages and regular ω-languages and obtain qualitatively

3

different results from prior work. Our work applies this method to two generalizations of DFAs:

advice DFAs and nominal DFAs.

Advice DFAs were studied as early as 1968 by Salomaa (52), though we follow the notation

of Kruckman et al. (32). Advice DFAs generalize classical DFAs by allowing the automata

access to an additional advice string that it reads concurrently with the input. This makes

them useful in modeling situations where the transition behavior can vary over time. They

also have connections to logic: it is a classical result that DFAs correspond to weak monadic

second-order formulas over the structure of natural numbers with the successor operation;

advice DFAs correspond to formulas over expansions of this structure by unary predicates, a

frequently studied setting; see e.g. (11; 17; 24; 48). Another motivating factor for advice DFAs

comes from the study of automatic structures, which are structures whose domain and atomic

relations are recognized by DFAs. It turns out some natural structures are not automatic or

even isomorphic to an automatic structure, such as (Q,+), the additive group of the rationals

(54). However, (Q,+) is isomorphic to a structure whose domain and atomic relations are

recognized by advice DFAs (32; 45). For advice DFAs, we give the first known bounds on query

complexity.

Nominal DFAs, introduced by Bojańczyk, Klin, and Lasota (13), are a generalization DFAs

to infinite alphabets. Such a generalization can be useful when there are infinitely many options

for data values, such as in XML documents (where arbitrary strings can appear as attribute

values) or in software verification (in order to deal with pointers or arbitrary function parame-

ters). Generalizing automata theory to infinite alphabets is not as simple as replacing instances

4

of “finite” with “infinite”, since without any restrictions, the fact that there are uncountably

many subsets of any infinite set makes computation intractable. However, in most reasonable

applications, there is additional structure that can be leveraged to make computation reason-

able. Nominal DFAs utilize the notion of nominal sets (first introduced by Gabbay & Pitts

(26)) to formalize this idea. Nominal sets use group actions to capture the idea that in most

cases, data values can be compared with each other, such as for equality or for the ordering

in an underlying total order on the data values. A further discussion of this intution can be

found in Subsection III.3.1. Aside from the development of the theory of automata over infinite

alphabets, nominal sets have also found much use in the concurrency and semantics communi-

ties as a formalism for modeling name binding (see e.g. (43; 46)). For nominal DFAs, we give

qualitatively different results from prior work. A more detailed discussion of our results can be

found in Section III.1.

I.2 Weighted model counting

The Boolean satisfiability problem, often abbreviated SAT, is a classic problem in computer

science of determining whether or not there exists an assignment of Boolean variables that

satisfies a given Boolean formula. It is a canonical NP-complete problem with wide-ranging

applications. The counting version of this problem, #SAT, asks how many distinct assignments

satisfy the formula, and is the starting point for various model counting problems. Generaliza-

tions of the problem can be found by changing the underlying logic from propositional logic,

such as to first-order logic, or by moving to the weighted setting, in which an assignment or

structure is given a weight and the goal is to find the weighted sum of all satisfying assign-

5

ments/models instead of just the count. Our work is focused on the weighted first-order model

counting problem, i.e., computing the weighted sum of all models of some first-order theory

over a fixed domain.

Weighted model counting is closely related to problems in statistical relational learning

(27; 49), in which one aims to model and learn probabilistic relationships between objects which

are generally not identically and independently distributed (a common assumption in statistical

learning), but rather have rich interconnected relational structure. Such problems crop in real-

world scenarios where large knowledge bases contain millions or billions of rows of uncertain

relational data. As an example, Google’s Knowledge Vault (21) contains triples in the form

of (subject, predicate, object), such as (Barack Obama, place of birth, Honolulu).

Associated to each triple is a confidence score which represents how likely Knowledge Vault

believes the statement to be true. One may then desire to carry out probabilistic inference,

that is, to determine the probability of some statement being true given the information in the

knowledge base.

A standard formalization of this problem is via Markov logic networks (MLNs) (50). An

MLN consists a finite collection of pairs (wi, φi), where wi ∈ [0,∞] and each φi is a first-order

formula. Each pair is called a constraint, and is meant to represent the fact that the formula φi

is true with probability proportional to the weight wi. If wi = ∞, then (wi, φi) is called a hard

6

constraint, representing that φi must hold. For example, consider the Markov logic network

consisting of the following two constraints:

2.0 (smokes(x) ∧ influences(x, y)) → smokes(y)

0.5 stress(x) → smokes(x)

which encodes that people who are influenced by smokers are more likely smoke and that

people who are stressed are also more likely to smoke, while the effect of being influenced by

a smoker is greater than the effect of being stressed. Given a fixed domain, every first-order

structure over the domain is then assigned weight exp(
∑

iwini), where i ranges over all finite-

weight constraints and ni is the number of tuples in the structure that satisfy constraint φi.

Structures that fail to satisfy a hard contstraint are assigned weight 0. This induces a probability

distribution over all structures, where each structure is given probability proportional to its

weight. The task of probabilistic inference in this case is to determine the probability that a

given first-order sentence. For example, one could ask what the probability that the statement

∃x(smokes(x) ∧ ∀y(stress(y) → ¬influences(y, x))) holds, which expresses the likelihood

that there is a smoker who is not influenced by anyone who is stressed. Following (58), this

problem can be recast as a weighted first-order model counting problem in the following way.

Suppose we have an MLN {(wi, φi(xi)) | i ∈ I} ∪ {(∞, φj(xj)) | j ∈ J}, where wi is finite

for all i ∈ I. For each i ∈ I, introduce a new relation symbol Ri(xi). Let T be the theory

{∀xi Ri(xi) ↔ φi(xi) | i ∈ I} ∪ {∀xj φj(xj) | j ∈ J}. Assign w(Ri) = ewi for each i ∈ I, and

7

w(P) = 1 for all other relation symbols P . Then determining Pr(ψ) according to the MLN over

the domain [n] is equivalent to computing WFOMC(T∪{ψ},n,w)
WFOMC(T,n,w) .

Since the desire is to utilize weighted first-order model counting for computational tasks, a

major goal is to prove computational complexity results for WFOMC. In general, the weighted

first-order model counting problem is computationally hard: in particular, there is a sentence

whose weighted model counting problem is known to be #P1-hard
1 (12, Theorem 3.1). On the

other hand, for certain nice fragments of first-order logic, the weighted model counting problem

can be computed in polynomial time, such as for sentences involving only two logical variables

(57; 58; 12). This was later extended to allow for counting quantifiers (33) and a linear order

axiom (55).

Independently of the work on weighted model counting, the unweighted version of the first-

order model counting problem has been extensively studied in the combinatorics literature. In

particular, much work has focused on understanding the asymptotic growth rates of hereditary

properties of various combinatorial objects, which are classes of objects that are defined by a

universal theory. A typical result proves a “jump” in the possible asymptotic growth rates,

that is, showing that the number of objects of size n must either be at most f(n) or at least

g(n), where f(n) has strictly slower asymptotic growth rate than g(n). The problem was

first studied for graphs by Scheinerman and Zito (53), eventually culminating in a series of

papers by Balogh, Bollobás, and Weinrich which together give a classification of the possible

1the complexity class #P1 is the class of functions that count the number of accepting computations
for a nondeterministic Turing machine with a unary input alphabet (56)

8

growth rates into four discrete classes (8; 9; 10). Other settings that have been studied include

hypergraphs (22), tournaments (7), and posets (6). Generalizing all of the previously listed

examples, Laskowski and Terry give a complete classification of the jumps in growth rates of

hereditary properties of L-structures for any finite relational language L (36).

Since the results on hereditary properties often involve strong structural characterizations of

classes falling into the various growth rates, one may hope that this can shed some light on the

computational aspects of the weighted model counting problem. In the other direction, restrict-

ing to the fragments of first-order logic studied in weighted model counting may yield stronger

classification results for unweighted model counting. One immediate obstacle to interactions

between these two areas is the need to restrict to universal theories in the unweighted case.

The usual Skolemization procedure is not suitable for model counting problems, since it adds

function symbols to the language. However, an advantage of the weighted setting is the exis-

tence of an efficient Skolemization procedure that preserves the weighted model count without

adding any function symbols (58). With this procedure in hand, studying any weighted model

counting problem is equivalent to studying the weighted model counting problem for a univer-

sal sentence, at which point one may hope to utilize the classification results proven for the

unweighted counting problem to provide further insight into the weighted case. Understanding

this connection is the main motivation for our work.

I.3 The model theoretic perspective

At first glance, the relationship between first-order model theory and the subfields of AI

that we study may not be so obvious. Model theory generally concerns itself with studying

9

infinite (and often uncountable) structures, which tends to lie outside the realm of tractable

computation, an important requirement for applications in AI. However, a major recent trend

of understanding dividing lines in model theory has led to many fruiful applications outside of

model theory.

At its core, first-order model theory is about developing a theory of definable sets, i.e.,

subsets of a structure which are defined by a first-order formula. This parallels a wide range of

other areas in math and computer science. For example, a central motivating theme in algebraic

geometry is to develop a theory of varieties, which in the classical sense are sets definable in

algebraically closed fields by polynomial equations. In a very different area, the main focus

of computational complexity theory is to develop the theory of complexity classes, which (for

decision problems) are subsets of finite strings defined by the computational resources needed

to compute them.

One of the first roadblocks to model theory is that a general theory of definable sets is,

in a formal sense, impossible, such as incompleteness phenomena (e.g., Gödel’s incompleteness

theorems) or undecidability phenomena (e.g., the MRDP theorem). One one might tackle

these roadblocks by studying the degrees of incompleteness or undecidability, which (roughly

speaking) are the routes taken by modern set theory and computability theory. On the other

hand, since many objects studied in mathematics are known to be well-behaved in particular

ways, model theory takes the approach of imposing strong tameness assumptions and studying

the consequences of such assumptions. This has led to the development of dividing lines which

10

separate theories into distinct classes for which the structure theory can be established to

varying degrees.

One strength of this approach is that many of the dividing lines studied in model theory

have equivalent combinatorial characterizations, which opens up interactions with other areas of

math and computer science that utilizing the same or similar conditions. The earliest instance

of this interaction was when Laskowski observed that a formula being NIP corresponds to

its corresponding class of definable sets having finite VC-dimension (34). VC-dimension is a

combinatorial notion of complexity that found much use in the computational learning theory

literature as a characterization of concept classes that are probably approximately correct (PAC)

learnable. Outside of model theory and computational learning theory, VC-dimension has

proven to be tremendously useful in combinatorics, such as giving improvements to Szemerédi’s

celebrated regularity lemma for graphs of bounded VC-dimension (38) and a proof of the Erdös-

Hajnal conjecture for graphs with bounded VC-dimension (44).

More recently, Chase and Freitag noticed that model-theoretic stability corresponds with

finite Littlestone dimension (18). Littlestone dimension is another combinatorial notion of com-

plexity that was originally introduced by Littlestone as a way to characterize online learnability

(37). On the other hand, stability is the most studied tameness assumption in model theory,

with decades of work going into developing a structure theory for stable theories. Stability also

has applications in combinatorics, with Malliaris and Shelah proving another strengthening of

the Szemerédi regularity lemma for stable graphs (41). Since Chase and Freitag’s observation,

a flurry of interplay between model theory and computational learning theory in the setting

11

of finite Littlestone dimension has occured, leading to results such as the equivalence of online

learnability and private PAC learnability (1) and several other equivalent characterizations of

online learning (40).

In his PhD thesis, Chase also notes that the model-theoretic notion of nfcp (not the finite

cover property) corresponds to finite strong consistency dimension (20), which is a strengthening

of the consistency dimension which we use to derive our bounds on query learning of various

forms of automata. Strong consistency dimension is also known as the dual Helly number, a

notion arising from discrete geometry which has also found other applications in learning theory

(e.g. (16)).

In the area of model counting, early work in studying the asymptotic growth rates of heredi-

tary properties relied on mainly combinatorial methods. However, Laskowski and Terry utilized

several model-theoretic ideas and techniques to prove their general result, such as the notion of

mutual algebraicity, which was first introduced in a purely model-theoretic context by Laskowski

(35). The problem of finding finitely many distinct jumps in the growth rates of hereditary prop-

erties also mirrors one of the original goals of model-theoretic classification theory, which was

to understand the number of non-isomorphic models of a complete theory in various (infinite)

cardinalities.

CHAPTER II

PRELIMINARIES

II.1 Basic Notation

Given a natural number ℓ ∈ N and a set X, let [ℓ] := {1, . . . , ℓ},

X(ℓ) := {(x1, . . . , xℓ) ∈ Xℓ | xi ̸= xj for all i ̸= j}, and

(
X

ℓ

)
:= {Y ⊆ X | |Y | = ℓ}

We will frequently use overlined letters to denote tuples of elements or variables, and bolded

letters to denote tuples of natural numbers. If x is a tuple of variables (or elements), then

xi will denote the i-th element of the tuple, and similarly ki will denote the i-th element of

k ∈ Nℓ. Additionally, given a vector k ∈ Nℓ of natural numbers, a k-partition of X is an

ordered partition of X into sets X1, . . . , Xℓ such that |Xi| = ki for each 1 ≤ i ≤ ℓ.

Given a set of symbols A, let A∗ denote the set of all finite strings over A. Furthermore,

let Aω denote the set of all length-ω strings over A (equivalently, the set of all functions

f : N → A).

II.2 First-order logic

In this section, we set some notation for various concepts in first-order logic, including

some non-standardized terminology. We assume familiarity with the basics of first-order model

theory, including languages, structures, satisfaction, theories, and types.

12

13

Let L be a language. We will use calligraphic letters (e.g., M,N) for L-structures, and plain

letters (e.g., M,N) to denote the domain of the corresponding structure. Given an L-formula

φ(x), let φ(x)1 denote φ(x) and φ(x)0 denote ¬φ(x). Given an L-structure M and a formula

φ(x1, . . . , xs), define

φ(M) := {(a1, . . . , as) ∈M s | M |= φ(a1, . . . , as)} .

For n ≥ 1, an n-type p(x1, . . . , xn) is a consistent set of L-formulas each with free variables

x1, . . . , xn, and a type is complete if it is maximally consistent. Furthermore, given a tuple

a ∈ M, and a set B ⊆ M , let tpM(a/B) denote the type of a over B, i.e., the set of all L-

formulas with parameters from B that are satisfied by a. If B is empty, we will omit it, and if

M is clear from context, we will also omit it. Similarly, let qftpM(a/B) denote the quantifier-

free type of a, i.e., the set of all quantifier-free L-formulas that are satisfied by a. Given a type

p(x, y) in two variables, let popp(x, y) denote type p(y, x) obtained by interchanging x and y.

An atom is a formula of the form R(x) or x1 = x2. A literal is an atom or its negation.

The following definition is not standard, but will be useful for our purposes. We define the

strict n-type of (a1, . . . , an), denoted by tpMstr(a1, . . . , an) to be

tpMstr(a1, . . . , an) ={φ(x1, . . . , xn) | φ is a literal involving all variables, and M |= φ}

∪{xi ̸= xj | 1 ≤ i < j ≤ n},

14

and we say that an n-type p(x1, . . . , xn) is strict if xi ̸= xj ∈ p for all 1 ≤ i < j ≤ n, and all

other elements of p are literals involving all variables x1, . . . , xn.

A formula is in disjunctive normal form (DNF) if it is in the form

n∨
i=1

mi∧
j=1

ψij(x),

where n,m1, . . . ,mn are positive integers and ψij are literals involving the variables in x. A

formula is a full DNF if in every one of the inner conjuncts, each atom or its negation appears

once, and each conjunct appears at most once (up to the order of the literals in the conjunct).

As an example, if the language consists of one unary relation symbol P and one binary relation

symbol R,

ϕ(x1, x2) = (P (x1) ∧ P (x2) ∧R(x1, x1) ∧R(x2, x2) ∧R(x1, x2) ∧R(x2, x1))

∨ (P (x1) ∧ ¬P (x2) ∧R(x1, x2) ∧ ¬R(x1, x1) ∧R(x2, x2) ∧ ¬R(x2, x1))

is a full DNF. A formula is in prenex normal form if it is of the form Q1x1 · · ·Qnxn ψ(x, y),

where each Qi is a quantifier and ψ is quantifier-free. Q1x1 · · ·Qnxn is called the prefix and ψ

is called the matrix. A formula is in Skolem normal form if it is in prenex normal form and

uses only universal quantifiers. Every quantifier-free formula is equivalent to a full DNF, and

every formula is equivalent to one written in prenex normal form.

Definition II.2.1. For n ∈ N, let FOn denote the fragment of first-order logic consisting of

formulas where at most n distinct logical variables are used.

15

A counting quantifier is a quantifier of the form ∃≤k, ∃=k, or ∃≥k. The intepretation of ∃≤k

is given by: M |= ∃≤kx ψ(x, b) if and only |{a ∈ M | M |= ψ(a, b)}| ≤ k. The interpretations

of ∃=k and ∃≥k are given by the same condition, replacing ≤ with = and ≥, respectively. Note

that ∃≤k, ∃=k, and ∃≥k can be defined using the standard existential and universal quantifiers

with k + 1, k + 1, and k distinct logical variables, respectively. For n ∈ N, let Cn denote the

fragment of first-order logic consisting of formulas that can use counting quantifiers where at

most n distinct logical variables are used.

Given a binary relation symbol R, let LO(R) denote the axioms stating that R is a linear

order.

II.3 Query learning

Let X be a set (the instance space). A concept is a function C : X → {0, 1}, and a concept

class C on X is a nonempty set of concepts. We note that a concept is sometimes equivalently

defined as a subset of X, but for our purposes it will be easier to reason about functions. Fix

a concept C ∈ C, which we call the target, and another concept class H ⊇ C, which we call the

hypothesis class.

• An equivalence query (EQ) consists of a hypothesis H ∈ H, to which the oracle answers

yes if H = C, or with a counterexample x ∈ X for which H(x) ̸= C(x).

• A membership query (MQ) consists of an element x ∈ X, to which the oracle responds

with the value of C(x).

The query learning procedure consists of consecutive rounds: in each round, the learner poses

a query to the oracle, and the oracle responds with the corresponding answer. The learner

16

is allowed to choose queries based on the responses to previous queries, and succeeds if they

submit the target as an equivalence query. In EQ-learning, the learner is only allowed to

submit equivalence queries, while in (EQ+MQ)-learning, the learner can use both equivalence

and membership queries.

Definition II.3.1 (Query Complexity). Let C ⊆ H be two concept classes. The EQ-query

complexity of C with queries from H is defined to be the least n such that there is an algorithm

for the learner to submit equivalence queries from H with the property that for any C ∈ C, the

learner can identify C within at most n queries, or ∞ if no such n exists.

The (EQ+MQ)-query complexity of C with queries from H is defined in the same way, except

that the learner is allowed to also use membership queries.

We note that we make no assumptions on how the oracle chooses counterexamples for

equivalence queries. That is to say, we study the worst-case bounds. Other work has studied

the case where counterexamples are chosen from some known distribution, e.g. (3).

A significant stream of prior work has studied the relationship between query learning and

combinatorial complexity measures of C and H (31; 5; 19; 30), in particular the Littlestone

dimension, consistency dimension, and strong consistency dimension (also known as the dual

Helly number), which we define now.

A binary element tree is a complete binary tree whose internal nodes are labeled by elements

of X. A binary element tree T is shattered by C if there is a way to label all the leaves of T

with elements of C such that the following condition holds: given a leaf node labeled by A ∈ C,

for each internal node above A labeled by x ∈ X, A(x) = 1 if and only if the (unique) path

17

from the root to A goes through the left child of x. An example of a (labelled) binary element

tree of height 2 is given in Figure 1.

x0

x1

C0 C1

x2

C2 C3

Figure 1: A binary element tree of height 2. Here, x0, x1, x2 ∈ X, and C0, C1, C2, C3 ∈ C. The
tree is shattered exactly when C0(x0) = C0(x1) = 1, C1(x0) = 1 but C1(x1) = 0, C2(x0) = 0
but C2(x2) = 1, and C3(x0) = C3(x2) = 0

Definition II.3.2 (Littlestone dimension). The Littlestone dimension of a concept class C,

denoted Ldim(C), is the maximum n such that there exists a binary element tree T of height n

which is shattered by C. If no such n exists, we say that Ldim(C) = ∞.

Remark II.3.3. A straightforward bound for the Littlestone dimension of a finite class C is

Ldim(C) ≤ log |C|. To see this, note that a binary element tree T of height > log |C| has more

than |C| leaves, so there must be two leaves with the same label C ∈ C. Consider the internal

node where the paths leading to these two leaves first differ; suppose it is labeled by x. These

two paths are such that they both end at a leaf labeled by C, and one goes through the left

18

child of an internal node labeled by x and the other goes the right child of an internal node

labeled by x. This implies that x ∈ C and x /∈ C, which is contradictory information, and so T

cannot be shattered.

We now define (strong) consistency dimension. For the following bulleted definitions, let

A,B be partial functions from X to {0, 1}.

• dom(A) denotes domain of A.

• The size of A refers to the cardinality of dom(A).

• For a set Y ⊆ dom(A), the restriction of A to Y is the partial function A|Y defined by

A|Y (x) = A(x) for x ∈ Y and undefined outside of Y .

• We say that B extends A if dom(A) ⊆ dom(B) and B|dom(A) = A. On the other hand,

we say that A is a restriction of B.

• Given a concept class C, A is n-consistent with C if every size n restriction of A has an

extension in C. Otherwise, A is n-inconsistent.

Definition II.3.4 (Consistency Dimension). The consistency dimension of C with respect to

H, denoted Cdim(C,H), is the least n such that for every concept A : X → {0, 1} that is

n-consistent with C, we have that A ∈ H. If no such n exists, we say that Cdim(C,H) = ∞. In

the case that H = C, we will write Cdim(C) to denote Cdim(C, C).

Remark II.3.5. By contrapositive, Cdim(C,H) ≤ n if for every concept A such that A /∈ H,

there is a subset Y ⊆ X of size n such that A|Y cannot be extended to anything in C. It is often

19

easier to work concretely with the contrapositive characterization of consistency dimension, so

our proofs of bounds on consistency dimension will go through this direction.

Definition II.3.6 (Strong Consistency Dimension). The strong consistency dimension of C

with respect to H, denoted SCdim(C,H), is the least integer n such that for every partial

function A : X → {0, 1} that is n-consistent with C, there is an extension of A that is in H.

If no such n exists, we say that SCdim(C,H) = ∞. In the case that H = C, we will write

SCdim(C) to denote SCdim(C, C).

While the definitions of consistency dimension and strong consistency dimension appear sim-

ilar, the two quantities can differ significantly—even for DFAs, SCdim is much larger than Cdim.

Concretely, let Ln,m denote the class of binary regular languages on strings of length at most m

specified by a DFA with at most n states. Chase and Freitag showed that Cdim(Ln,m) = O(n2),

but SCdim(Ln,m) cannot be polynomial in n and m (see the discussion following Theorem 3.3

of (19)). Furthermore, for any given c, d <∞, they give an explicit example of a concept class

Cc,d such that Ldim(C) = d and Cdim(C) = c+ 1, but SCdim(C) = cd (19, Examples 2.15 and

2.19).

We now state the best known bounds on query complexity in terms of the Littlestone and

(strong) consistency dimensions.

Theorem II.3.7. Let C ⊆ H be two concept classes on a set X, and set c = Cdim(C,H), d =

Ldim(C), and k = SCdim(C,H). Then:

1. (19, Theorem 2.24) The (EQ+MQ)-query complexity of C with queries from H is O(cd).

20

2. (19, Theorem 2.6) The EQ-query complexity of C with queries from H is O(cd).

3. (30, Theorem 1) The EQ-query complexity of C with queries from H is O(dk log k).

Note that item 3 seems to improve the dependence of EQ-query complexity on Littlestone

dimension from exponential to linear. However, as seen above, the move from Cdim to SCdim

can reintroduce an exponential dependence on Ldim, so it is not guaranteed to be a stronger

bound.

II.4 Automata theory

In this section, we set notation and terminology for deterministic finite automata and regular

languages, and review the Myhill-Nerode theorem.

Definition II.4.1 (Deterministic Finite Automata). Let Σ be a finite set (the input alphabet).

A deterministic finite automaton (DFA) over Σ consists of the following data:

• a finite set Q (the set of states);

• a function δ : Q× Σ → Q (the transition function);

• a state q0 ∈ Q (the initial state); and

• a set of states F ⊆ Q (the set of accepting states).

Given an input string x = x1x2 · · ·xn ∈ Σ∗, and a DFA M , define the run of M on x to

be the sequence of states α0, . . . , αn ∈ Q such that α0 = q0, and for 1 ≤ i ≤ n, we have that

δ(αi−1, xi) = αi. A string x ∈ Σ∗ is accepted by M if the last state appearing in the run of

M on x is in F . A language is a function L : Σ∗ → {0, 1}. We note that languages are often

21

defined as subsets of Σ∗, but here we use functions in order to align with our definition of a

concept. A language L is recognized by a DFA M if M accepts x for all x ∈ L. We say that a

language L is regular if it is recognized by some DFA.

The Myhill-Nerode theorem provides a useful syntactic characterization of regular languages.

Given a language L : Σ∗ → {0, 1}, define an equivalence relation ≡L on Σ∗ as follows: for strings

x, y ∈ Σ∗, we say that x ≡L y iff L(xz) = L(yz) for all z ∈ Σ∗.

Theorem II.4.2 (Myhill-Nerode). A language L is regular if and only if ≡L has finitely many

equivalence classes. Moreover, ≡L has exactly n classes if and only if the minimal DFA recog-

nizing L has exactly n states.

II.5 Weighted Model Counting

A weighted language is a pair (L, w), where L is a finite relational language and w : L → R.

Let p = {Ri(x) | i ∈ I} ∪ {¬Rj(x) | j ∈ J}, where I and J are finite and Ri, Rj ∈ L. That

is, p is a finite type consisting only of literals. We will extend w to such types by setting

w(p) =
∏
i∈I w(Ri).

Let M be a finite L-structure. The weight of M is

w(M) :=
∏
R∈L

w(R)|R(M)|.

Note: we work in what is called the symmetric setting, in which every instance of a relation

holding is given the same weight. For example, in the setting of graphs, the weight of a given

graph only depends on the number of edges present, not on the actual pairs of vertices for which

22

there is an edge. The asymmetric setting, in which weight assigned to an instance of a relation

also depends on the actual tuple for which the relation holds, is known to be strictly harder

than the symmetric setting (29).

Let A be a set and C be collection of structures. Define

WFOMC(C, A,w) :=
∑
M∈C
M=A

w(M)

WFOMC(C, n, w) := WFOMC(C, [n], w)

If T is a first-order theory, let CT := {M | M |= T} denote the class of models of T and define

WFOMC(T,A,w) := WFOMC(CT , A,w), and similarly,

WFOMC(T, n, w) := WFOMC(T, [n], w).

If the weight of every relation is 1, then WFOMC(T, n, w) is simply the number of models

of T with domain [n]. We will refer to this value as FOMC(T, n) (the unweighted model count).

We note that in most literature on weighted model counting, the weight of a structure is

defined in terms of two weight functions w,w : L → R, with w representing the weight of the

negation of a relation. That is, the weight of a model is instead defined as

weightw,w(M) :=
∏
R∈L

w(R)|R(M)| w(R)|¬R(M)|,

23

and the weighted model count is defined accordingly. The two setups are equivalent up to

rescaling the weights, so for simplicity of notation we only use one weight function. The

equivalence is as follows:

Let w,w : L → R. We may assume that w is always non-zero—if w(R) = 0 for some R,

then any model for which R failed on any tuple would have weight 0, so we can assume that R

always holds and ignore it. Thus, we may let w′ : L → R be defined by w′(R) = w(R)/w(R).

If r(R) denotes the arity of the relation R, then

weightw,w(M) =
∏
R∈L

w(R)|R(M)| w(R)|¬R(M)|

=
∏
R∈L

(
w(R)

w(R)

)|R(M)|
w(R)|R(M)| w(R)|¬R(M)|

=
∏
R∈L

(
w′(R)|R(M)|

)(
w(R)|M |r(R)

)
= w′(M)

∏
R∈L

w(R)|M |r(R)
.

In particular, if WFOMC(T, n, w,w) denotes the weighted model count using both weight

functions, we have that

24

WFOMC(T, n, w,w) =
∑
M|=T
M=[n]

weightw,w(M)

=
∑
M|=T
M=[n]

(
w′(M)

∏
R∈L

w(R)n
r(R)

)

= WFOMC(T, n, w′) ·
∏
R∈L

w(R)n
r(R)

.

The final factor can be computed in polynomial time with respect to n, so we may convert

between the weighted model counts in both settings efficiently.

We conclude this subsection by giving the statement of the Skolemization procedure for

weighted first-order model counting.

Theorem II.5.1. (58, Theorem 3) Let (L, w) be a weighted language and φ be an L-sentence.

Then there is another weighted language (L′, w′) expanding (L, w) and an L′-sentence φ such

that for any L-sentence ψ,

WFOMC(φ ∧ ψ, n,w) = WFOMC(φ′ ∧ ψ, n,w′).

In particular, if we take ψ = ⊤, then WFOMC(φ, n,w) = WFOMC(φ′, n, w). Moreover, this

procedure runs in time polynomial in the size of φ (and independent of n).

25

II.6 Hereditary properties

Definition II.6.1. Let L be a finite relational language. A hereditary L-property is a class of

L-structures that is closed under isomorphism and substructure.

Fact II.6.2. Let H be a class of L-structures. The following are equivalent:

(i) H is a hereditary L-property.

(ii) There is a class F of L-structures such that H is exactly the class of L-structures that do

not contain any substructure that is isomorphic to a structure from F .

(iii) There is a universal theory T such that H is exactly the class of models of T .

Given a hereditary property H, let TH denote the universal theory that defines it. On the

other hand, given a universal theory T , let HT denote the hereditary property that it defines.

For a hereditary property H, let Hn := {M ∈ H | M has domain [n]}. The speed of H is

the function n 7→ |Hn|. Note that FOMC(H, n) = |Hn|.

Theorem II.6.3. (36, Theorem 1.4) Suppose H is a hereditary L-property, where L is a finite

relational language with maximum arity r. Then one of the following holds:

1. There are k ∈ N and rational polynomials p1(x), . . . , pk(x) such that for sufficiently large

n, |Hn| =
∑k

i=1 pi(n)i
n.

2. There is an integer k ≥ 2 such that |Hn| = nn(1−
1
k
−o(1)).

3. There is ϵ > 0 such that nn(1−o(1)) ≤ |Hn| ≤ 2n
r−ϵ

.

4. There is a constant C > 0 such that |Hn| = 2Cn
r+o(nr).

CHAPTER III

QUERY LEARNING OF ADVICE AND NOMINAL AUTOMATA

III.1 Introduction

In this chapter, we prove query learning bounds for two variants of DFAs: advice DFAs and

nominal DFAs. A more detailed discussion of the area of query learning of automata can be

found in Section I.1.

For advice DFAs, we give the first known bound for the query complexity of advice DFAs.

In particular, our result for advice DFAs is as follows: let Ladv
k (n,m) be the set of languages

over an alphabet of size k recognized by an advice DFA on at most n states, restricted to strings

of length at most m (the precise definition of an advice DFA is given in Section III.2).

Theorem III.2.6. The (EQ+MQ)-query complexity of Ladv
k (n,m) with queries from Ladv

k (2n,m)

is O(n3mk log n).

The restriction on the length of the strings in Ladv
k (n,m) is necessary to make the problem

tractable and can be thought of as giving a dependence on the length of the longest counterex-

ample for equivalence queries. It may be of interest to see if there is an analogous version of

the L∗ algorithm for advice DFAs, and if so, how the bounds with that approach compare to

ours.

26

27

For nominal DFAs, our result is as follows: given a G-alphabet A, let Lnom
A (n, k) denote the

set of G-languages recognized by a nominal DFA whose state set has at most n orbits and has

dimension at most k (precise definitions of these terms are given in Section III.3).

Theorem III.3.45. For a fixed G-alphabet A, the (EQ+MQ)-query complexity of

Lnom
A (n, k) with queries from Lnom

A (n, k) is at most nO(k)

kk
.

Query learning of nominal DFAs was previously studied by Moerman et al. (42), who de-

velop a generalization of Angluin’s L∗ algorithm for nominal DFAs. The bound that they derive

is a complicated quantity (see (42, Corollary 1)), but in particular we observe the following: if

the target automaton has n orbits and nominal dimension k, and p is the nominal dimension

of the (fixed) alphabet, then their bound is lower bounded by both

(a) min
((

nk
e

)m
,
(
m
e

)nk)
and

(b) (knn!)p.

These are not explicitlly stated (42), but follow with some additional work (see Remark III.3.29).

Our result improves on (a) in the sense that our bound does not depend on the length of

the longest counterexample, and improves the asymptotic dependence on n compared to (b)

(polynomial in n with respect to k, instead of factorial in n). This is especially important in

light of Corollary III.3.38, which says that in this setting, k is at most a constant multiple of

n. However, we do not give any algorithmic complexity guarantees.

28

III.2 Learning advice DFAs

III.2.1 Overview of advice DFAs

In this subsection, we give an introduction to automata with advice. For a more compre-

hensive overview, see (32).

Definition III.2.1 (Advice DFA). Let Σ and Γ be finite sets (the input and advice alphabets,

respectively). An advice DFA M over Σ with advice from Γ consists of the following data:

• a finite set Q (the set of states);

• a length-ω string A ∈ Γω over the advice alphabet (the advice string);

• a function δ : Q× Σ× Γ → Q (the transition function);

• a state q0 ∈ Q (the initial state); and

• a set of states F ⊆ Q (the set of accepting states).

Given an input string x = x1x2 · · ·xn ∈ Σ∗ and advice DFA M , define the run of M on x

to be the sequence of states α0, . . . , αn ∈ Q such that α0 = q0, and for each i ∈ [n], we have

that δ(αi−1, xi, Ai) = αi. A string x ∈ Σ∗ is accepted by M if the last state appearing in the

run of M on x is in F . A language L is recognized by aa advice DFA M if M accepts x for all

x ∈ L. We say that a language L is regular with advice if it is recognized by some advice DFA.

Advice DFAs extend classical DFAs with the addition of the advice string A (which is fixed

beforehand as part of the automaton). The advice string is read in parallel with the input

string; i.e., when M reads the nth character of the input, it also has access to the nth character

29

of the advice when deciding which transition to make. One way to think about the advice string

is that it allows the transition function to vary at each step of the computation (although at a

fixed step i, the transition behavior is the same regardless of the input string).

Advice DFAs satisfy a Myhill-Nerode characterization, under a variant of the ≡L relation.

Define an equivalence relation ≡L,m on Σm by x ≡L,m y iff xz ∈ L ⇐⇒ yz ∈ L for all z ∈ Σ∗.

Notice that ≡L,m is simply ≡L restricted to strings of length m.

Theorem III.2.2. (Myhill-Nerode for advice DFAs, cf. (32, Theorem 4)) Let L be a language.

(i) Suppose L is accepted by an advice DFA that has n states. Then ≡L,m has at most n

classes for all m ∈ N.

(ii) Suppose ≡L,m has at most n classes for all m ∈ N. Then there is an advice DFA on 2n

states that recognizes L.

Note that this statement is more precise than the original version in (32); in particular, the

relationship between the number of states and the number of ≡L,m-classes does not appear in

the original theorem. However, this relationship is easily derived from its proof. We also note

that in general, the bound of 2n states in the second item is tight, as witnessed by the following

example.

Example III.2.3. Define L : {0, 1}∗ → {0, 1} by

L(w) =


1 if (w has an even number of 0’s ∧ |w| ≠ 2) or (|w| = 3)

0 otherwise

30

Notice that ≡L,m has at most two classes for every m—one for strings with an even number

of 0’s and one for strings with an odd number of 0’s. However, it is not recognized by any DFA

M with advice with 3 states. To see this, let M accept L. The runs of strings 00 and 01 both

end in reject states of M , but since they are in separate ≡L,2-classes, they must end in distinct

states. So there are at least two reject states. Similarly, the runs of 000 and 001 both end in

distinct accept states. Thus there must be at least 4 states in M .

Replacing “w has an even number of 0’s” with any regular language that has at most k

equivalence classes in the Myhill-Nerode relation (for example, “the number of 0’s in w is

divisible by k”), we obtain a language Lk such that ≡Lk,m has at most k classes for every m,

but any advice DFA accepting Lk must have at least 2k states.

III.2.2 Learning bound for advice DFAs

For the remainder of the section, fix k ∈ N and let Σ be an alphabet of size k. We will not fix

the advice alphabet Γ; however, notice that if we are constructing an automaton with at most

n states, we may take Γ to have size nnk—the advice string can be thought of as coding the

transition function at a given step, and there are nnk possible transition functions (functions

from Q× Σ → Q).

Note that there are uncountably many languages that are regular with advice—for example,

for every length-ω string A, the language consisting of the finite prefixes A is regular with

advice. Thus we cannot have any finitary representation of arbitrary languages that are regular

31

with advice. Hence, we consider the case where we restrict to strings of bounded length. Let

Ladv
k (n,m) denote the set

Ladv
k (n,m) := {L ⊆ Σ≤m | L is recognized by an advice DFA with at most n states},

and let Ek(n,m) denote the set

Ek(n,m) := {L ⊆ Σ≤m | ≡L,ℓ has at most n classes for all ℓ ≤ m}.

By Theorem III.2.2, Ladv
k (n,m) ⊆ Ek(n,m) ⊆ Ladv

k (2n,m) for any n,m ∈ N. Because of this,

it is more convenient to compute the query complexity of Ladv
k (n,m) with queries Ladv

k (2n,m).

Proposition III.2.4. The consistency dimension of Ladv
k (n,m) with respect to Ladv

k (2n,m) is

at most n(n+ 1).

Proof. Let L : Σ≤m → {0, 1}, and suppose that L /∈ Ladv
k (2n,m). Since Ek(n,m) ⊆ Ladv

k (2n,m),

we have that L /∈ Ek(n,m). This means that there is ℓ ∈ [m] and strings x0, . . . , xn ∈ Σℓ which

are pairwise ≡L,ℓ-inequivalent. For each 0 ≤ i < j ≤ n, let zij ∈ Σ∗ such that L(xizij) ̸=

L(xjzij) (i.e., zij distinguishes xi and xj according to ≡L,ℓ). Consider the set B = {xkzij | 0 ≤

i < j ≤ n, k = i, j}, which has size 2
(
n+1
2

)
= n(n + 1). Let L′ : Σ≤m → {0, 1} extend L|B.

Since L′ agrees with L on B, x0, . . . , xn must be ≡L′,ℓ-inequivalent. Therefore, L′ has at least

n + 1 ≡L′,ℓ-classes. Hence L′ /∈ Ek(n,m), so in particular L′ /∈ Ladv
k (n,m). So B is a set of

size n(n + 1) which witnesses the fact that L is n-inconsistent with Ladv
k (n,m), and thus the

consistency dimension of Ladv
k (n,m) w.r.t. Ladv

k (2n,m) is at most n(n+ 1).

32

Proposition III.2.5. The Littlestone dimension of Ladv
k (n,m) is O(nmk log n).

Proof. We can bound the Littlestone dimension of Ladv
k (n,m) by bounding its size and applying

Remark II.3.3. As noted earlier, we may interpret Γ as coding all possible transition functions,

so the advice string A simply determines the transition function at each step.

Consider an advice DFA such that Q = [n] and q0 = 1. To fully specify the behavior of the

automaton on strings of length m, it is enough to choose one transition function for each step,

as well as the set of accepting states. There are (nnk)m = nnmk ways to choose the transition

functions, and 2n ways to choose the set of accepting states. So there are nnmk2n total possible

advice DFAs of this form.

Every language in Ladv
k (n,m) is accepted by an advice DFA of this form, so |Ladv

k (n,m)| is

upper bounded by nnmk2n. Therefore

Ldim(Ladv
k (n,m)) ≤ log |Ladv

k (n,m)|

= log(nnmk2n)

= nmk log n+ n

= O(nmk log n).

Combining Propositions III.2.4 and III.2.5 with Theorem II.3.7(1), we obtain:

Theorem III.2.6. The (EQ+MQ)-query complexity of Ladv
k (n,m) with queries from Ladv

k (2n,m)

is O(n3mk log n).

33

III.3 Learning nominal DFAs

III.3.1 Overview of nominal sets and DFAs

In this subsection, we define nominal sets and nominal DFAs. For a more comprehensive

treatment, see (13). We will also state and prove some useful facts about nominal sets in

Subsection III.3.2.

As mentioned in the introduction, one must leverage some underlying structure to properly

generalize automata theory to infinite alphabets. For example, consider the alphabet A = N,

and define L : A∗ → {0, 1} by L(w) = 1 if and only if w = aa for some a ∈ A. An equivalently

defined language over a finite alphabet is easily seen to be regular, and so we expect this example

to be “regular” as well. An infinite automaton that recognizes L is shown in Figure 2.

qIstart

q0

q1

...

qA qR

0

1

0

1

̸= 0

̸= 1

A
A

Figure 2: An infinite automaton that recognizes L. In some cases, we have combined infinitely
many transitions into a single arrow, by assuming that we can compare values for equality.

34

This can be condensed further into an actually finite diagram, as shown in Figure 3.

qIstart qx qA qR

∀x ∈ A

x x

̸= x

A
A

Figure 3: A finitary representation of Figure 2. We can compress the infinitely many distinct
states for each character from A into a single “state” because it is enough to be able to compare
whether or not the first and second characters read are equal or not.

In order to formalize these intuitions about representing infinitary data with finitary repre-

sentations, Bojańczyk, Klin, and Lasota use the notion of nominal sets. Note that we do not

work in the most general setting of (13)—we will only focus on what they call the equality sym-

metry. However, it is reasonable to expect that our results can generalize to other well-behaved

symmetries.

Given a set A, let Sym(A) denote the group of permutations on A, i.e., the set of bijections

from A to A with the operation of function composition. For the rest of the paper, let G denote

Sym(N). Given a set X, a (left) action of G on X is an operation · : G×X → X such that:

1) for all x ∈ X, e · x = x, where e is the identity function on N, and

2) for all π, π′ ∈ G and x ∈ X, (π ◦ π′) · x = π · (π′ · x).

35

Example III.3.1. Let X = N2. Define an action of G on X by π · (n,m) = (π(n), π(m)).

Observe that there is a permutation π for which π · (n1,m1) = (n2,m2) if and only if either (1)

n1 = m1 and n2 = m2, or (2) n1 ̸= m1 and n2 ̸= m2. This example illustrates how the action

of Sym(N) can be used to formalize the idea of being able to compare data values for equality.

Definition III.3.2. Fix X and an action of G on X. Given a subset D ⊆ N and an element

x ∈ X, we say that D supports x if for every π ∈ G for which π|D is the identity function on

D, we have that π · x = x. Furthermore, a finite set D ⊆ N is called the least support of x if

(1) D supports x,

(2) no proper subset of D supports x, and

(3) no other finite subset of N has properties (1) and (2).

We will use supp(x) to denote the least support of x.

An equivalent characterization of an element having least support is that the intersection

of any two finite supports of x also supports x.

Definition III.3.3. A nominal set is a set X along with an action of G on X such that every

element of X has a least support.

For example, given any k ∈ N, Nk with the action π · (a1, . . . , ak) = (π(a1), . . . , π(ak)) is a

nominal set, since every element (a1, . . . , ak) is supported by {a1, . . . , ak}. Similarly, N(k) with

the action π · {a1, . . . , ak} = {π(a1), . . . , π(ak)} is also a nominal set.

36

Lemma III.3.4. (13, Lemma 4.9) Let X be a nominal set and let x ∈ X. If D supports x,

then for any π ∈ G, π(D) supports π · x.

As a corollary, |supp(x)| = |supp(π · x)| for any π ∈ G.

Definition III.3.5. Let X be a nominal set. The nominal dimension of X is sup
x∈X

|supp(x)|

(i.e., the largest size of a least support).

In the literature on nominal sets, this is simply referred to as the dimension of X. However,

in order to prevent confusion with other notions of dimension used in this paper, we will use

the term nominal dimension.

Definition III.3.6. Let X be a nominal set. The orbit of an element x ∈ X, denoted G · x, is

the set

G · x = {π · x | π ∈ G}.

Every nominal set is partitioned into the disjoint union of its orbits. We say thatX is orbit-finite

if X is the union of only finitely many orbits.

By Lemma III.3.4, elements in the same orbit have the same size of least support, so orbit-

finite nominal sets have finite nominal dimension.

Example III.3.7. Let X = N2, and define the action of G on X as in Example III.3.1. The

orbits of X are G · (n, n) and G · (n,m), where n,m ∈ N and n ̸= m. These are the sets of

pairs whose coordinate are either equal or unequal, respectively. Thus X is orbit-finite with

two orbits. Additionally, every element (n,m) has least support {n,m}, and so the nominal

dimension of X is 2.

37

For i = 1, . . . , n, let Xi be a set with an action of G on Xi. The pointwise action of G on∏n
i=1Xi is the action given by π · (x1, . . . , xn) = (π · x1, . . . , π · xn).

Definition III.3.8 (Equivariance). Let X be a nominal set. A subset Y ⊆ X is equivariant if

for any y ∈ Y and π ∈ G, π · y ∈ Y .

A relation R on
∏n
i=1Xi, where each Xi is a nominal set, is equivariant if it is equivariant

when considered as a subset of the product equipped with the pointwise action.

In particular, a function f : X → Y is equivariant exactly when

f(π · x) = π · f(x).

Remark III.3.9. Y is an equivariant subset of X if and only if Y is a union of orbits.

We are now ready to define nominal DFAs and state the nominal Myhill-Nerode theorem.

Fix an orbit-finite nominal set A, which we will call the G-alphabet. The action of G on A

naturally extends to A∗: given a string w ∈ A∗, π ·w is the string obtained by letting π act on

each individual character of w.

Definition III.3.10 (G-language). A G-language is a function L : A∗ → {0, 1} such that the

set {x ∈ A∗ | L(x) = 1} is an equivariant subset of A∗.

Definition III.3.11 (Nominal DFA). Let A be an orbit-finite nominal set (the input alphabet).

A nominal DFA M over A consists of the following data:

• an orbit-finite nominal set Q (the set of states);

38

• an equivariant function δ : Q×A→ Q (the transition function)

• a state q0 ∈ Q such that the orbit of q0 is {q0} (the initial state)

• an equivariant subset F ⊆ Q (the set of accepting states)

As a shorthand, we say that a nominal DFA M has n orbits or nominal dimension k when

the state set has n orbits or nominal dimension k.

Given an input string x = x1x2 · · ·xn ∈ A∗, define the run of M on x to be the sequence

of states α0, . . . , αn ∈ Q such that α0 = q0, and for 1 ≤ i ≤ n, we have that δ(αi−1, xi) = αi.

A string x ∈ Σ∗ is accepted by M if the last state appearing in the run of M on x is in

F . A language L is recognized by a nominal DFA M if M accepts x for all x ∈ L, and the

language recognized by a nominal DFA must be a G-language (13, Definition 3.1). We say that

a G-language L is nominal regular if it is recognized by some nominal DFA.

Example III.3.12. Let A = N, and let L : A → {0, 1} be the example language from earlier

defined by L(w) = 1 if and only if w = aa for some a ∈ A. This language is a G-language.

Additionally, in the automaton that recognizes L, we can define an action of G on the set of

states by σ · qi = qσ(i) for any σ ∈ G and i ∈ N, while σ · q = q for all σ ∈ G for the states

qI , qA, and qR. This automaton is a nominal DFA, and hence L is nominal regular.

Let L be a G-language, and define the usual relation ≡L on A∗ by: x ≡L y if and only if for

all z ∈ A∗, we have L(xz) = L(yz). This relation is equivariant (13, Lemma 3.4), and hence

by Lemma III.3.21, A∗/ ≡L is a nominal set. We will write [x]L to denote the ≡L-equivalence

class of a string x ∈ A∗.

39

Theorem III.3.13. (Myhill-Nerode for nominal DFAs (13, Theorem 5.2)) Let A be an orbit-

finite nominal set, and let L be a G-language. Then the following are equivalent:

1. A∗/ ≡L has at most n orbits and has nominal dimension at most k;

2. L is nominal regular, and in particular is recognized by a nominal DFA with at most n

orbits and nominal dimension at most k.

Note that this statement is more precise than the original version in (13); in particular, the

conditions on the number of orbits and the nominal dimension do not appear in the original

theorem. For completeness, we give the proof of Theorem III.3.13, including the derivation of

the bounds on the number of orbits and the nominal dimension.

Definition III.3.14 (Reachable Nominal DFA). A nominal DFA M is said to be reachable if

for every state q in M , there is x ∈ A∗ such that the run of M on x ends in state q.

Definition III.3.15 (Syntactic Automaton). Fix an orbit-finite nominal alphabet A, and let

L : A∗ → {0, 1} be a G-language. The syntactic automaton of L, denoted ML is specified as

follows:

• the state set is the set A∗/ ≡L;

• the transition function is δL : A∗/ ≡L × A→ A∗/ ≡L defined by

δL([x]L, a) = [xa]L,

• the initial state is [ϵ]L;

40

• the set of accepting states is {[x]L | x ∈ L}.

Lemma III.3.16. (13, Lemma 3.6; Proposition 5.1) The syntactic automaton of a G-language

is a reachable nominal DFA.

By (13, Lemma 3.7), a G-language is always recognized by its syntactic automaton.

Definition III.3.17 (Automaton Homomorphism). LetM = (Q, δ, q0, F) andM
′ = (Q′, δ′, q′0, F

′)

be two nominal DFAs over the same alphabet A. An automaton homomorphism from M to M ′

is an equivariant function f : Q→ Q′ such that:

• f(q0) = q′0;

• q ∈ F ⇐⇒ f(q) ∈ F ′ for every q ∈ Q; and

• f(δ(q, a)) = δ′(f(q), a) for every q ∈ Q, a ∈ A.

If there exists an automaton homomorphism from M to M ′, then M and M ′ recognize the

same language: for any string x, the run of M on x ends in state q if and only if the run of M ′

on x ends in the state f(q), and q ∈ F if and only if f(q) ∈ F ′, so M accepts x if and only if

M ′ accepts x.

Lemma III.3.18. (13, Lemma 3.7) Let L be a G-language. For any reachable nominal DFA

M that recognizes L, there is a surjective automaton homomorphism f from M to ML.

We can now prove bounds in the nominal Myhill-Nerode theorem:

Proof of Theorem III.3.13. (1. ⇒ 2.) Suppose that A∗/ ≡L has at most n orbits and nominal

dimension at most k. ThenML is a nominal DFA that recognizes L, and its state set is A∗/ ≡L

which by assumption has at most n orbits and nominal dimension at most k.

41

(2. ⇒ 1.) Suppose that L is recognized by a nominal DFA M with at most n orbits and

nominal dimension at most k. We may assume that M is reachable, so by Lemma III.3.18,

there is a surjective automaton homomorphism f from M to the syntactic automaton ML. By

Lemma III.3.19 and Lemma III.3.20, the state set of ML has at most n orbits and nominal

dimension k. But the state set of ML is exactly A∗/ ≡L, and so we obtain the desired bounds.

III.3.2 Auxiliary results on nominal sets and G-languages

In this subsection, we state and prove several useful facts about nominal sets and G-

languages. Some of these results do not appear in any previously published literature and

may also be of independent interest.

We first give some lemmas that demonstrate how equivariant functions behave nicely with

orbits and supports.

Lemma III.3.19. Let f : X → Y be an equivariant function, and let x ∈ X. The image of the

orbit of x (in X) under f is equal to the orbit of f(x) (in Y).

As a corollary, if f is surjective, then Y has at most as many orbits as X.

Proof. The orbit of f(x) is the set {π · f(x) | π ∈ G}. By equivariance of f , this is equal to

{f(π · x) | π ∈ G} = f({π · x | π ∈ G}), which is the image under f of the orbit of x.

Lemma III.3.20. (13, Lemma 4.8) Let f : X → Y be an equivariant function, x ∈ X, and

D ⊆ N. If D supports x, then D supports f(x).

42

As a corollary, supp(f(x)) ⊆ supp(x), and hence if f is surjective, the nominal dimension

of Y is at most the nominal dimension of X.

We will also work extensively with quotients by equivariant equivalence relations. Recall

that if R is an equivalence relation on X, X/R denotes the set of equivalence classes of R, and

is called the quotient of X by R.

Lemma III.3.21. (13, Lemma 3.5) Let X be a nominal set and R ⊆ X ×X be an equivariant

equivalence relation. Then the quotient X/R is a nominal set, under the action π ·[x]R = [π ·x]R,

and the quotient map x 7→ [x]R is a surjective equivariant function.

Lemma III.3.22. Let X be a nominal set and R ⊆ X × X be an equivariant equivalence

relation. Then supp([x]R) ⊆ supp(x) for every x ∈ X, and the nominal dimension of X/R is

at most the nominal dimension of X.

Proof. This follows immediately from Lemma III.3.20 and Lemma III.3.21.

Lemma III.3.23. Let X,Y be nominal sets. Given an equivariant function F : X → Y and

equivariant equivalence relation ≡Y on Y , there are induced equivariant equivalence relation

≡X on X and equivariant function f : X/ ≡X→ Y/ ≡Y .

Furthermore, f is injective, and if F is surjective, then f is also surjective.

Proof. Define ≡X by x1 ≡X x2 if and only if F (x1) ≡Y F (x2). A standard argument con-

firms that this is indeed an equivalence relation, equivariance follows from the fact that F is

equivariant.

43

Next, define f : X/ ≡X→≡Y by f([x]≡X) = [F (x)]≡Y . This is well-defined: if x1 ≡X x2,

then

f([x1]≡X) = [F (x1)]≡Y

= [F (x2)]≡Y since x1 ≡X x2 ⇒ F (x1) ≡Y F (x2)

= f([x2]≡X)

f is equivariant since if π ∈ G, then f(π · [x]≡X) = f([π · x]≡X) = [F (π · x)]≡Y = [π ·F (x)]≡Y =

π · [F (x)]≡Y = π · f([x]≡X). f is injective since for x1, x2 ∈ X,

f([x1]≡X) = f([x2]≡X)

⇒ [F (x1)]≡Y = [F (x2)]≡Y

⇒ F (x1) ≡Y F (x2)

⇒ x1 ≡X x2

⇒ [x1]≡X = [x2]≡X .

Finally, if F is surjective, then given [y]≡Y ∈ Y/ ≡Y , there is x ∈ X such that F (x) = y and

hence f([x]≡X) = [y]≡Y , so f is surjective.

Since automata involve transition functions, we will need to understand products of nominal

sets. Nominality is easily seen to be preserved under Cartesian products:

44

Proposition III.3.24. The product of two nominal sets is nominal. In particular, the nominal

dimension of the product of two nominal sets X×Y is at most the sum of the nominal dimensions

of X and Y .

Proof. Suppose X and Y are nominal with nominal dimensions k and ℓ, respectively. Let

(x, y) ∈ X × Y . Notice that supp(x) ∪ supp(y) has size at most k + ℓ and supports (x, y).

On the other hand, in the most general setting, products of orbit-finite nominal sets need

not be orbit-finite (13, Example 2.5). However, in our context of Sym(N), as well as some other

nicely behaved symmetries, products of orbit-finite sets are known to be orbit-finite (13, Section

10). For our purposes, we will need an explicit bound on the number of orbits of products of

orbit-finite sets.

Recall that N(k) := {(a1, . . . , ak) | ai ̸= aj for i ̸= j}. When equipped with the pointwise

action of G, N(k) is a single-orbit nominal set.

Lemma III.3.25. (13, Lemma 4.13) Given a nominal set X of nominal dimension k that has

exactly one orbit, there is an equivariant surjection fX : N(k) → X.

Definition III.3.26. (cf. (42, Section 3)) Given k1, . . . , kn ∈ N, let fN(k1, . . . , kn) denote the

number of orbits of N(k1) × · · · × N(kn).

Proposition III.3.27. (cf. (42, Section 3)) Let Xi be a nominal set with ℓi orbits and nominal

dimension ki for i = 1, . . . , n. Let X := X1 × · · · ×Xn and ℓ = ℓ1 · · · ℓn. Then X has at most

ℓfN(k1, . . . , kn) many orbits.

Proposition III.3.27 is stated but not proven in (42), so for completeness, we give the proof.

45

Proof. Let (x1, . . . , xn) ∈ X. Its orbit G · (x1, . . . , xn) must be contained in the product (G ·

x1) × · · · × (G · xn). Hence, it is enough to bound the number of orbits of any given product

O1× . . .×On, where each Oi is an orbit of Xi, and multiply by the number of possible products.

Fix orbits O1, . . . , On of X1, . . . , Xn, respectively. By Lemma III.3.25, there are equivariant

surjections fOi : N(ki) → Oi. Taking the product gives us the equivariant surjection

N(k1) × · · · × N(kn)
fO1

×···×fOn−−−−−−−−→ O1 × · · · ×On.

By Lemma III.3.19, O1 × · · · ×On has at most as many orbits as N(k1) × · · · ×N(kn), which has

fN(k1, . . . , kn) orbits. Now, there were ℓ = ℓ1ℓ2 · · · ℓn ways to choose the orbits O1, . . . , On, so

in total, X can have at most ℓfN(k1, . . . , kn) orbits.

In light of Proposition III.3.27, we can upper bound the number of orbits of a product of

nominal sets by calculating an upper bound on the value of fN. We do so for the case n = 2:

Proposition III.3.28. Suppose (without loss of generality) that k1 ≥ k2. Then

(
k1
e

)k2
≤
(
k1
k2

)
k2! ≤ fN(k1, k2) ≤ (2k1)

k2 .

In particular, if k2 is a constant, then fN(k1, k2) = Θ(kk21).

Proof. Consider tuples ā = (a1, . . . , ak1) ∈ N(k1) and b̄ = (b1, . . . , bk2) ∈ N(k2). The orbit of the

pair (ā, b̄) is exactly determined by the collection of indices i, j such that ai = bj . So to choose

an orbit, we can first choose the number of indices 0 ≤ r ≤ k2 that ā and b̄ coincide on. Then

46

we need to choose r indices i1, . . . , ir of ā, r indices of j1, . . . , jr of b̄, and a bijection between

{i1, . . . , ir} and {j1, . . . , jr} in order to determine the indices that ā and b̄ coincide on. There

are
(
k1
r

)(
k2
r

)
r! ways to choose these.

Thus the total number of orbits is

fN(k1, k2) =

k2∑
r=0

(
k1
r

)(
k2
r

)
r!,

This is lower bounded by
(
k1
k2

)
k2!. Since k2! ≥

(
k2
e

)k2
and

(
k1
k2

)
≥
(
k1
k2

)k2
for any value of

k1, k2, we have that

fN(k1, k2) ≥
(
k1
k2

)
k2! ≥

(
k1
k2

)k2 (k2
e

)k2
=

(
k1
e

)k2
.

On the other hand, since
(
n
k

)
≤ nk

k! for any n and k,

k2∑
r=0

(
k1
r

)(
k2
r

)
r! ≤

k2∑
r=0

kr1
r!

(
k2
r

)
r!

=

k2∑
r=0

kr1

(
k2
r

)

≤
k2∑
r=0

kk21

(
k2
r

)

= kk21

k2∑
r=0

(
k2
r

)

= kk21 2k2 = (2k1)
k2

47

Proposition III.3.28 will help us to calculate an explicit upper bound on the number of

possible nominal automata later, but to illustrate its usefulness we first use it to substantiate

a comment from the introduction about previously known query bounds. The bound in (42,

Corollary 1) involves a fN(p(n+m), pn(k+ k log k+1)) factor, where n is the number of orbits

of the state set of the target automaton, k is the nominal dimension of the target automaton,

p is the nominal dimension of the alphabet, and m is the length of the longest counterexample.

Notice that fN is non-decreasing in all coordinates. Therefore, fN(p(n +m), pn(k + k log k +

1)) is lower bounded by both fN(pn, pnk) and fN(m,nk). Applying the lower bounds from

Proposition III.3.28 yields the following:

Remark III.3.29. The bound on the (EQ+MQ)-query complexity of nominal automata given

in (42, Corollary 1) is at least (knn!)p, and at least min
((

nk
e

)m
,
(
m
e

)nk)
.

Our next result is a bound on the number of single-orbit nominal sets. We will use this to

bound the number of possible nominal DFAs, but we note that this result is fully general and

may be of independent interest. An isomorphism of nominal sets is an equivariant bijection.

Proposition III.3.30. The number of distinct (up to isomorphism) single-orbit nominal sets

of nominal dimension at most k is at most 2O(k2).

The proof of Proposition III.3.30 is quite technical and will involve a lot of machinery

adapted from (13), which we now set up.

Definition III.3.31. (cf. (13, Definition 9.11)) A support representation is a pair (k, S), where

k ∈ N, and S is a subgroup of Sym([k]).

48

Definition III.3.32. (cf. (13, Definition 9.14)) Given a support representation (k, S), the

semantics of (k, S), denoted [k, S]ec, is the set N(k)/ ≡S , where ≡S is defined as

(a1, . . . , ak) ≡S (b1, . . . , bk) ⇐⇒ ∃τ ∈ S ∀i ∈ [k], aτ(i) = bi.

There is a natural action of G on [k, S]ec defined by

π · [(a1, . . . , ak)]S = [(π(a1), . . . , π(ak))]S .

Proposition III.3.33. (cf. (13, Proposition 9.15)) For any support representation (k, S),

[k, S]ec is a single-orbit nominal set of nominal dimension k, and every single-orbit nominal set

X of nominal dimension k is isomorphic to [k, S]ec for some S ≤ Sym([k]).

Proposition III.3.34. (cf. (13, Proposition 9.16)) Let X = [k, S]ec and Y = [ℓ, T]ec be

single-orbit nominal sets. Let

U = {u : [ℓ] → [k] | u is injective and ∀σ ∈ S ∃τ ∈ T, σ ◦ u = u ◦ τ}.

Equivariant functions from X to Y are in bijective correspondence with U/ ≡T (where ≡T is

as in Definition III.3.32).

Lemma III.3.35. [k, S]ec is determined, up to isomorphism, by k and the conjugacy class of

S in Sym([k]).

49

Proof. Let X = [k, S]ec and Y = [ℓ, T]ec be single-orbit nominal sets. Suppose that k = ℓ and

that S, T are conjugate in Sym([k]). That is, there is a permutation ρ : [k] → [k] such that

ρSρ−1 = T . Define F ρ : N(k) → N(k) by F ρ((a1, . . . , ak)) = (aρ(1), . . . , aρ(k)) (i.e., reorder the

input using ρ). Notice that F ρ is an equivariant bijection. By Lemma III.3.23, F ρ and ≡T

induce an equivalence relation on N(k). Since ρSρ−1 = T , the induced equivalence relation is

actually ≡S . Then the induced function f is an equivariant bijection between X and Y .

In the other direction, suppose there is an isomorphism f : X → Y . The proof of Proposi-

tion III.3.34 gives us a bijection u : [ℓ] → [k] such that uS = Tu. In particular, k = ℓ and u is

a permutation in Sym([k]) that witnesses that S and T are conjugate.

With this machinery in hand, we can give the proof of Proposition III.3.30:

Proof. Let X = [k′, S]ec be a single-orbit nominal set with nominal dimension at most k. By

Lemma III.3.35, X is determined up to isomorphism by the value of k′ and the conjugacy class

of S in Sym([k′]). Since the nominal dimension of X is k, k′ ≤ k, and so there are k choices for

k′. It remains to count the number of conjugacy classes of subgroups of Sym([k]). The number

of subgroups of Sym([k]) is 2Θ(k2) (47, Theorem 4.2), which certainly gives an upper bound

for the number of conjugacy classes of subgroups. Additionally, any subgroup has at most k!

conjugates (one for each permutation in Sym([k])), so the number of conjugacy classes is also

at most 2O(k2)/k! = 2O(k2).

Thus the number of single-orbit nominal sets of nominal dimension at most k is at most

k2O(k2) = 2O(k2).

50

The next result will be needed when we prove bounds on the consistency dimension.

Lemma III.3.36. Let X be any nominal set, let x ∈ X, and let D = supp(x). Suppose that

τ ∈ G fixes every element of D except for one. Then τ · x ̸= x.

Proof. Suppose for contradiction that τ · x = x. Let i ∈ D be the only element of D such that

τ(i) ̸= i, and notice that τ(i) /∈ D since τ fixes every element of D other than i. We claim that

D \ {i} supports x. To see this, let σ ∈ G such that σ fixes every element of D \ i. We need

to show that σ · x = x. We may assume that σ(i) ̸= i, since otherwise σ fixes every element

of D, and since D supports x, we would have σ · x = x. Additionally, σ(i) /∈ D since σ fixes

every element of D other than i. Now, let j = τ(i) and k = σ(i). Let πjk be the permutation

that swaps j and k, and consider the permutation πjkσ. We have that πjkσ|D = τ |D, as σ and

τ both fix every element of D \ {i}, and τ(i) = j = πjk(k) = πjk(σ(i)) = (πjkσ)(i). Since D

supports x, we can deduce that πjkσ · x = τ · x = x. Then σ · x = πjk · x. Since j, k /∈ D,

πjk fixes every element of D, and so πjk · x = x. This shows that σ · x = x, and since σ was

an arbitrary permutation that fixed every element of D \ {i}, we may conclude that D \ {i}

supports x. This is a contradiction, since D is the least support of x. Hence τ · x ̸= x.

The next result is also used to prove bounds on the consistency dimension. However, it also

has an interesting consequence (Corollary III.3.38) which may be of independent interest.

Lemma III.3.37. Let L be a G-language such that A∗/ ≡L has n orbits. Then for every

x ∈ A∗, there is x′ ∈ A∗ and τ ∈ G such that |x′| < n and [x′]L = τ · [x]L. That is, every orbit

of A∗/ ≡L contains an ≡L-class that is represented by a string of length strictly less than n.

51

Proof. Suppose for contradiction that there is some x ∈ A∗ such that for every string x′ of

length strictly less than n, [x′]L /∈ G · [x]L. We may assume that x is of minimal length m in

its ≡L-class. Write x = a1 · · · am.

Consider the set of prefixes of x of length up to n−1, i.e., the set {ϵ, a1, a1a2, . . . , a1 · · · an−1}.

Since these all have length strictly less than n, the ≡L-classes [a1 · · · ai]L for 0 ≤ i ≤ n−1 (here,

a1 · · · a0 denotes the empty string) must belong to the (n−1)-many orbits that are not G · [x]L.

As there are n strings in the set, there must be 0 ≤ i < j ≤ n − 1 such that [a1 · · · ai]L and

[a1 · · · aj]L belong to the same orbit. That is, there is τ ∈ G such that τ · (a1 · · · ai) ≡L a1 · · · aj .

Notice that ≡L is preserved under appending common suffixes; i.e., if x ≡L y, then for any

z ∈ A∗, xz ≡L yz. Thus [τ · (a1 · · · ai)]aj+1 · · · am ≡L a1 · · · ajaj+1 · · · am = x. However, notice

that [τ · (a1 · · · ai)]aj+1 · · · am is strictly shorter than x, and is in the same ≡L-class as x, which

contradicts the assumption that x was of minimal length in its ≡L-class. Thus for every orbit

of A∗/ ≡L, there must be a string of length strictly less than n that is in the orbit.

Corollary III.3.38. If L is a G-language over an alphabet A which has nominal dimension p

such that A∗/ ≡L has n orbits, then A∗/ ≡L has nominal dimension at most (n− 1)p.

Proof. Let [x]L ∈ A∗/ ≡L. By Lemma III.3.37, there is some x′ ∈ A∗ with |x′| < n and π ∈ G

such that π · [x]L = [x′]L. Then Lemma III.3.4 and Lemma III.3.22 tell us that

|supp([x]L)| = |supp(π · [x]L)| = |supp([x′]L)| ≤ |supp(x′)|.

52

Each of the letters of x′ is supported by a set of size at most p. Since G acts on x′ coordinate-

wise, the least support of x′ is contained in the union of the least supports of all the letters of

x′, which is a set of size at most (n − 1)p. Hence every element of A∗/ ≡L is supported by a

set of size at most (n− 1)p, and so the nominal dimension of A∗/ ≡L is at most (n− 1)p.

In particular, if A is fixed, the dimension of A∗/ ≡L is bounded by a constant multiple

of the number of orbits, suggesting that the number of orbits of A∗/ ≡L is what ultimately

controls the complexity of L, not the nominal dimension.

III.3.3 Littlestone dimension of nominal DFAs

To prove bounds on the Littlestone dimension of the class of nominal DFAs, we bound the

number of possible nominal DFAs. We will do this by bounding the number of ways to choose

each of the defining parameters.

Lemma III.3.39. The number of possible state sets for a nominal DFA with n orbits and

nominal dimension k is 2O(nk2).

Proof. Since the state set Q is an orbit-finite nominal set with n orbits and nominal dimension k,

we count the number of such sets. We can view Q as the disjoint union of n single-orbit nominal

sets, each with nominal dimension at most k, just by considering each orbit independently. So

the number of possible state sets is the number of single-orbit nominal sets of nominal dimension

at most k, raised to the power n. By Proposition III.3.30, the number of single-orbit nominal

sets of nominal dimension ≤ k is at most 2O(k2). So the number of nominal sets with n orbits

and nominal dimension k is at most
(
2O(k2)

)n
= 2O(nk2).

53

Fix an input alphabet A, where A has ℓ orbits and nominal dimension p.

Lemma III.3.40. The number of possible transition behaviors for a nominal DFA with n orbits

and nominal dimension k is at most

(n(k + p)!)O(nkp) .

Proof. We count the number of equivariant functions δ : Q×A→ Q, where Q has n orbits and

nominal dimension k. By Lemma III.3.19, a single orbit of Q×A must map into a single orbit

of Q, so we can first choose a target orbit of Q for each orbit of Q×A. By Proposition III.3.27,

Q × A has at most nℓfN(k, p) orbits. Since p is fixed, by Proposition III.3.28, for any k,

fN(k, p) = O(kp). Furthermore, since ℓ is also fixed, Q × A has at most O(nkp) orbits. Thus

there are nO(nkp) many ways to choose the target orbits of each orbit of Q×A.

Once we have chosen a target orbit of Q for each orbit of Q × A, we must choose an

equivariant function from each orbit O1 of Q×A to one orbit O2 of Q. By Proposition III.3.24,

the nominal dimension of Q × A is at most k + p, and so O1 also has nominal dimension at

most k + p. Similarly, O2 has nominal dimension at most k. Therefore O1 = [k′, S]ec where

k′ ≤ k + p, and O2 = [ℓ, T]ec where ℓ ≤ k. By Proposition III.3.34, the number of equivariant

functions from O1 to O2 is upper bounded by the number of injections [ℓ] → [k], which is in

turn at most (k+p)!
p! ≤ (k + p)!.

54

We must choose one such equivariant function for each orbit of Q×A, so the total number

of choices of all of these functions is at most ((k + p)!)O(nkp). Once we have done this, we have

chosen a transition behavior δ : Q×A→ Q.

Hence the total number of possible transition behaviors is upper bounded by

nO(nkp) · ((k + p)!)nk
p

= (n(k + p)!)O(nkp) .

Let Lnom
A (n, k) denote the set of G-languages over A recognized by a nominal DFA with at

most n orbits and nominal dimension at most k.

Proposition III.3.41. The Littlestone dimension of Lnom
A (n, k) is at most

O (nkp (log n+ k log k))

Proof. We bound the Littlestone dimension by bounding the size of Lnom
A (n, k). To choose a

nominal DFA with at most n orbits and nominal dimension at most k, we must choose the state

set, transition function, initial state, and set of accepting states. By Lemma III.3.39, there are

at most 2O(nk2) choices for the state set. By Lemma III.3.40, there are at most (n(k + p)!)O(nkp)

choices for the transition function. There are at most n choices for the initial state (since the

55

initial state must be an orbit of its own) and 2n choices for the accepting states (since the set

of accepting states is a union of orbits). So in total, we can upper bound |LnomA (n, k)| by

|LnomA (n, k)| ≤ 2O(nk
2) (n(k + p)!)O(nkp) n2n.

Applying Remark II.3.3, using Stirling’s approximation, and remembering that p is constant,

Ldim(LnomA (n, k)) ≤ log |LnomA (n, k)|

≤ O
(
nk2

)
+O (nkp) (log n+ log((k + p)!)) + log n+ n

≤ O (nkp (log n+ (k + p) log(k + p)))

= O (nkp (log n+ k log k)) .

III.3.4 Consistency dimension of nominal DFAs

It remains to bound the consistency dimension, which is the purpose of this subsection. Our

first goal is to show that the nominal dimension of A∗/ ≡L is witnessed by a small set.

Proposition III.3.42. Let L be a G-language over alphabet A, and suppose that A∗/ ≡L has

nominal dimension at least k+1. Then there is a set B ⊆ A∗ of size 2(k+1) such that for any

G-language L′, if L|B = L′|B, then A∗/ ≡L′ also has nominal dimension at least k + 1.

Proof. Since A∗/ ≡L has nominal dimension ≥ k + 1, there is some x0 ∈ A∗ such that

|supp([x0]L)| ≥ k+1. Let D denote supp([x0]L), and let D0 be a subset of D of size k+1. Let

56

j = max(D) + 1, and for each i ∈ D0, let τi be the permutation that swaps i and i+ j. Notice

that τi fixes all but one element of D, and so by Lemma III.3.36, [τi · x0]L = τi · [x0]L ̸= [x0]L.

Thus for each i ∈ D0, there is some zi ∈ A∗ such that L((τi · x0)zi) ̸= L(x0zi). Let

B = {(τi · x0)zi | i ∈ D0} ∪ {x0zi | i ∈ D0},

which has size 2(k + 1).

Now, let L′ be a G-language extending L|B, and suppose for contradiction that A∗/ ≡L′

has nominal dimension at most k. That is, for every w ∈ A∗, |supp([w]L′)| ≤ k. In particular,

|supp([x0]L′)| ≤ k. For each i ∈ D0, L
′ agrees with L on (τi · x0)zi and x0zi, so L′((τi · x0)zi) ̸=

L′(x0zi). This shows that τi · [x0]L′ = [τi · x0]L′ ̸= [x0]L′ . Since the only elements not fixed by

τi are i and i+ j, it must be that at least one of i and i+ j are in the least support of [x0]L′ .

Thus for each i ∈ D0, supp([x0]L′) contains at least one of i and i + j. Since j > max(D), all

values i, i + j for i ∈ D0 are distinct, and so |supp([x0]L′)| ≥ |D0| = k + 1, which contradicts

the fact that |supp([x0]L′)| ≤ k.

Our next goal is to show that the number of orbits of A∗/ ≡L is witnessed by a small set.

Proposition III.3.43. Let L be a G-language over alphabet A, where A has nominal dimension

p, and suppose that A∗/ ≡L has at least n + 1 orbits. Then there is a set B ⊆ A∗ of size

2
(
n+1
2

)(
pn
k

)
(3pn)k such that for any G-language L′, if L|B = L′|B, then A∗/ ≡L′ also has at

least n+ 1 orbits.

57

Proof. Since A∗/ ≡L has at least n + 1 orbits, there are strings x0, . . . , xn such that [xi]L all

belong to distinct orbits. That is, for every τ ∈ G and 0 ≤ i < j ≤ n, [τ · xi]L = τ [xi]L ̸= [xj]L,

and thus there is zτij ∈ A∗ such that L((τ ·xi)zτij) ̸= L(xjz
τ
ij). Moreover, by Lemma III.3.37, we

may assume that |xi| ≤ n for each 0 ≤ i ≤ n.

For each 0 ≤ i ≤ n, let Di = supp(xi). Since the nominal dimension of A is p, we have that

|Di| ≤ p · |xi| ≤ pn. Also, let D be some subset of N such that D is disjoint from D0, . . . , Dn,

and |D| = max
0≤i≤n

|Di| ≤ pn.

Now, for each 0 ≤ i < j ≤ n, let

Σ′
ij := {σ′ : D′′ → Di ∪Dj ∪D | D′′ ⊆ Di of size k and σ′ is an injection}.

Notice that Σ′
ij has size at most

(
pn
k

)
(3pn)k: to choose a σ′, we choose a subset of Di of size

k and a value from Di ∪Dj ∪D for each of the k inputs. For each σ′ ∈ Σ′
ij , let σ ∈ G be an

arbitrary but fixed extension of σ′ to a permutation of N, and let Σij consist of all such σ (so

|Σij | = |Σ′
ij | ≤

(
pn
k

)
(3pn)k).

Now, let

B = {(σ · xi)zσij | 0 ≤ i < j ≤ n, σ ∈ Σij}∪

{xjzσij | 0 ≤ i < j ≤ n, σ ∈ Σij}.

B has size at most 2
(
n+1
2

)(
pn
k

)
(3pn)k. Let L′ be a G-language extending L|B, and assume for

contradiction that A∗/ ≡L′ has at most n orbits. Thus there must be 0 ≤ i < j ≤ n such that

58

[xi]L′ is in the same orbit as [xj]L′ . Let π ∈ G such that π · [xi]L′ = [xj]L′ . π does not have to

be in Σij , and so we cannot directly derive a contradiction. Instead, we will alter π in order to

obtain a σ ∈ Σij such that σ · [xi]L′ = [xj]L′ .

Let π′ ∈ G be defined as follows: let π(Di) denote the image of Di under π, and for each

element a ∈ π(Di) \ (Di ∪ Dj ∪ D), select a unique element ba ∈ D \ π(Di). This is possible

because |D| ≥ |Di| = |π(Di)|, and so |D \ π(Di)| ≥ |π(Di) \ D| ≥ |π(Di) \ (Di ∪ Dj ∪ D)|.

Let π′ be the permutation that swaps each a ∈ π(Di) \ (Di ∪Dj ∪D) with its corresponding

ba ∈ D \ π(Di), and fixes every other element of N.

Notice that π′ swaps elements not in Dj with elements in D, which is disjoint from DJ , and

so π′|Dj = idDj . Hence π′ · xj = xj . Also, if a ∈ Di, then π
′ ◦ π(a) ∈ Di ∪Dj ∪D: if π(a) ∈

Di ∪Dj ∪D, then by definition π′ does not affect π(a) and so π′(π(a)) = π(a) ∈ Di ∪Dj ∪D,

whereas if π(a) ∈ π(Di) \ (Di ∪ Dj ∪ D), π′ will transpose π(a) with an element in D. Let

D′
i denote supp([xi]L′). Since A∗/ ≡L′ has nominal dimension at most k, |D′

i| ≤ k. Also, by

Lemma III.3.22, D′
i ⊆ supp(xi) = Di. This then tells us that (π′ ◦ π)|D′

i
is an injection from a

subset of Di of size at most k into Di ∪Dj ∪D. Therefore, there is some σ ∈ Σij such that

σ|D′
i
= (π′ ◦ π)|D′

i
.

59

We may then deduce that

[σ · xi]L′ = σ · [xi]L′

= (π′ ◦ π) · [xi]L′

= π′ · (π · [xi]L′)

= π′ · [xj]L′

= [π′ · xj]L′

= [xj]L′ .

This means that for all z ∈ A∗, L′((σ ·xi)z) = L′(xjz). In particular, we may choose z = zσij .

However, since (σ · xi)zσij and xjzσij are in B, it must be that

L((σ · xi)zσij) = L′((σ · xi)zσij)

= L′(xjz
σ
ij)

= L(xjz
σ
ij),

a contradiction! So we may finally conclude that A∗/ ≡L′ has at least n+ 1 orbits.

Combining these facts, we can prove a bound on the consistency dimension of LnomA (n, k):

Proposition III.3.44. The consistency dimension of LnomA (n, k) with respect to itself is at

most 2
(
n+1
2

)(
pn
k

)
(3pn)k.

60

Proof. Let L : A∗ → {0, 1}, and suppose that L /∈ LnomA (n, k), i.e., L is not recognized by any

nominal DFA with at most n orbits and nominal dimension at most k. We must find a set B

of at most 2
(
n+1
2

)(
pn
k

)
(3pn)k strings such that any function extending L|B is not in LnomA (n, k).

Case 1: L is not equivariant. Then there is x0 ∈ A∗ and π ∈ G such that L(x0) ̸= L(π ·x0).

Set B = {x0, π · x0}. Any function L′ extending L|B cannot be equivariant, and therefore

cannot be nominal regular, so L′ /∈ LnomA (n, k).

Case 2: L is equivariant, and is recognized by some nominal DFA with at most n orbits.

By Theorem III.3.13, A∗/ ≡L has at most n orbits. Thus the nominal dimension of A∗/ ≡L

must be at least k + 1, or else another application of Theorem III.3.13 would imply that L

is recognized by a nominal DFA with at most n orbits and nominal dimension at most k,

contradicting the assumption that L /∈ LnomA (n, k). Let B ⊆ A∗ of size 2(k + 1) be as given by

Proposition III.3.42.

Now, let L′ : A∗ → {0, 1} extend L|B, and suppose for contradiction that L′ ∈ LnomA (n, k).

Since L′ is recognized by a nominal DFA, it must be a G-language, so by the definition of B,

A∗/ ≡L′ has nominal dimension at least k+1. However, by Theorem III.3.13 and the fact that

L′ is recognized by a nominal DFA with at most n orbits and nominal dimension at most k,

A∗/ ≡L′ has nominal dimension at most k, a contradiction! So L′ /∈ LnomA (n, k).

Case 3: L is equivariant, and L is not recognized by any nominal DFAs with at most n or-

bits. By Theorem III.3.13, A∗/ ≡L has at least n+1 orbits. Let B ⊆ A∗ of size 2
(
n+1
2

)(
pn
k

)
(3pn)k

be as given by Proposition III.3.43.

61

Now, let L′ : A∗ → {0, 1} extend L|B, and suppose for contradiction that L′ ∈ LnomA (n, k).

Since L′ is recognized by a nominal DFA, it must be a G-language, so by the definition of

B, A∗/ ≡L′ has at least n + 1 orbits. However, by Theorem III.3.13 and the fact that L′ is

recognized by a nominal DFA with at most n orbits and nominal dimension at most k, A∗/ ≡L′

has at most n orbits, a contradiction! So L′ /∈ LnomA (n, k).

In all three cases, we found a set B of size at most 2
(
n+1
2

)(
pn
k

)
(3pn)k such that any language

extending L|B cannot be in LnomA (n, k). We can then conclude that the consistency dimension

of LnomA (n, k) with respect to itself is at most 2
(
n+1
2

)(
pn
k

)
(3pn)k.

III.3.5 Learning bound for nominal DFAs

We can now use the bounds we proved for Littlestone dimension and consistency dimension

to prove our main result on nominal DFAs:

Theorem III.3.45. For a fixed G-alphabet A, the (EQ+MQ)-query complexity of

Lnom
A (n, k) with queries from Lnom

A (n, k) is at most nO(k)

kk
.

Proof. By Proposition III.3.41, the Littlestone dimension of LnomA (n, k) is at mostO (nkp (log n+ k log k)).

By Proposition III.3.44, the consistency dimension of LnomA (n, k) with respect to itself is at

most 2
(
n+1
2

)(
pn
k

)
(3pn)k. This is upper bounded by n(n + 1) (e·pn)

k

kk
(3pn)k, which is in turn at

most nO(k)

kk
. Applying Theorem II.3.7, the query complexity of LnomA (n, k) with queries from

LnomA (n, k) is at most O
(
nkp (log n+ k log k) n

O(k)

kk

)
= nO(k)

kk
.

CHAPTER IV

HEREDITARY PROPERTIES AND WEIGHTED FIRST-ORDER

MODEL COUNTING

IV.1 Introduction

In this chapter, we study the weighted first-order model counting problem and connections

to the speeds of hereditary properties. Most work on weighted first-order model counting

has focused on proving computational complexity results, and in particular identifying certain

fragments of first-order logic for which the weighted model counting problem is polynomial-time

computable. The first of these results was for FO2, the fragment of first-order logic in which

only two logical variables are allowed (57; 58) (with a standalone proof given in (12)). This

was later extended to C2, which allows the sentences to also include counting quantifiers (33).

Most recently, the results on FO2 and C2 were extended to allow an additional axiom stating

that one of the binary relations in the language forms a linear order (55).

On the other hand, most work in the unweighted setting comes from combinatorics, where

the focus was in characterizing the possible asymptotic growth rates of the model counting

function for various classes of combinatorial objects. The most general result in this area is

due to Laskowski and Terry, who work with hereditary properties of L-structures for any finite

relational language L, and prove that the asymptotic growth rate of a hereditary L-property

must fall into one of four asymptotic growth rates that have distinct “jumps” between them

62

63

((36), and see Theorem II.6.3). This setting captures many natural combinatorial objects

that were previously studied, such as graphs, directed graphs, tournaments, ordered graphs,

k-uniform hypergraphs, posets, and linear orders.

While the two streams of work in the weighted and unweighted settings have differing goals,

both often aim to gain insight into underlying structural conditions on the classes they are

working with in order to prove their results, whether it be for computational guarantees in the

weighted case or asymptotic characterizations in the unweighted case. Our main aim is to study

how the structural conditions developed in each setting can play a role in further understanding

the other setting.

In Section IV.2, we prove an auxilary result which allows us to assume that all relations only

convey information of their exact arity, and moreover that the maximum arity of the language

is at most the maximum number of logical variables that appear in a sentence for which we are

computing the (weighted or unweighted) model count. This fact is implicitly used in several

prior works on weighted model counting, citing what is called Scott’s reduction as described in

(28). However, as stated, Scott’s reduction only preserves satisfiability and the finite spectrum

of the sentence, and not necessarily the (weighted) model count. Hence, we provide a full proof

that computational efficiency of the weighted model count is preserved by this transformation.

In Sections IV.3 and IV.4, we use the structural characterizations for the slowest speed of

hereditary L-properties and the fastest speed of hereditary graph properties to give formulas

for the weighted model count in specific cases.

64

In Section IV.5, we study the unweighted model counting problem for FO2 and use the result

as inspiration for an alternative proof of the polynomial-time computability of the weighted

model counting problem for FO2.

We conclude the introduction by making a note about terminology. For the entire chapter,

we will only use quantifier-free types, so all uses of the word “type” in this chapter will refer to

a quantifier-free type.

IV.2 Strictly r-ary relations

Definition IV.2.1. Let R be an r-ary relation. Given a structure M, we say that R is strictly

r-ary in M if whenever M |= R(a1, . . . , ar), then all the ai are distinct. We say that a theory

T enforces that R is strictly r-ary if in every model M |= T , R is strictly r-ary in M.

Given a formula φ(x1, . . . , xk) with k free variables, an ordered partition I = (I1, . . . , Iℓ) of

[k], and variables or elements a1, . . . , aℓ, let φ(aI1 , . . . , aIℓ) denote the formula obtained from φ

by replacing xj with ai whenever j ∈ Ii.

Lemma IV.2.2. Let φ be an FOk sentence in a weighted language (L, w) that has maximum

arity r. Then there are:

• a weighted language (L′, w′) with maximum arity min(r, k),

• a universal FOk L′-sentence φ′,

• a polynomial-time computable function c : N → N with c(n) = 2O(nr), and

• a c(n)-to-one function F that takes an L-structure to an L′-structure with the same do-

main,

65

such that

(1) for each R′ ∈ L′ with arity r′, φ′ enforces that R′ is strictly r′-ary.

(2) for any L′-structure M′, the total weight of the preimage F−1(M′) can be computed in

polynomial time from the weight of M′, and

(3) M |= φ if and only if F (M) |= φ′.

Proof. First, by Theorem II.5.1, we may assume that φ is a universal sentence. Moreover, we

may write φ as a universally quantified full DNF; i.e.,

φ = ∀x1 · · · ∀xk
ℓ∨

j=1

m∧
i=1

ψi(x1, . . . , xk)
tij ,

where ψi ranges over all atoms involving only variables x1, . . . , xk, for some ℓ ∈ N and truth

values tij ∈ {0, 1}.

Consider a relation R ∈ L that has arity s. Let 1 ≤ r′ ≤ min(s, k), and consider an ordered

partition of the indices [s] into nonempty subsets I = (I1, . . . , Ir′). Add a new r′-ary relation

symbol RI to L′ and give it weight w′(RI) = w(R). Doing this for every relation in L and

every partition of its indices defines the weighted language (L′, w′).

We now define φ′ as follows. Notice that every atom ψi(x1, . . . , xk) is of the formR(xIi1 , . . . , xIir′
)

for some R ∈ L of arity s, partition I = {I1, . . . , Ir′} of [s], and distinct values ij ∈ [k]. Con-

66

struct φ′ by first replacing each atom in φ with the corresponding L′-atom RI(xI1 , . . . , xIr′).

Then, for every relation R′ ∈ L′, if R′ has arity r′, we append to φ′ a conjunct with

∀x1, . . . , xr′

R′(x1, . . . , xr′) →
∧
i ̸=j

xi ̸= xj

 .

Notice that this ensures that φ′ enforces that R′ is strictly r′-ary, so item (1) is satisfied.

Now, we define the function F . Given an L-structure M with domain M , we define the

L′-structure F (M) with domainM as follows: let RI ∈ L′, and let r′ be the arity of RI . Given

distinct a1, . . . , ar′ ∈M , set

F (M) |= RI(a1, . . . , ar′) ⇐⇒ M |= R(aI1 , . . . , aIr′),

and set F (M) |= ¬RI(a) whenever a is not a tuple of distinct elements. This completely

specifies the behavior of every relation on every tuple, so the result is an L′-structure.

For any L′-structure M′ with domain M , every element M of the preimage F−1(M′) can

be uniquely specified in the following way:

1. for each R ∈ L, partition I = (I1, . . . , Ir′) of the variables of R with r′ at most k and

the arity of R, and distinct a1, . . . , ar′ ∈ M , set M |= R(aI1 , . . . , aIr′) if and only if

M′ |= RI(a1, . . . , ar′);

2. for each R ∈ L with arity r′ > k and tuple a ∈ [n]r
′
with more than k distinct elements,

make an arbitrary choice for whether or not M |= R(a).

67

Item 1 gives a single choice. In item 2, for a given R ∈ L of arity r′, the number of choices that

need to be made is equal to the number of r′-tuples from [n] with more than k distinct elements.

There are nr
′
total r′-tuples from [n], and there are

(
n
j

)
jr

′
total r′-tuples that involve up to j

distinct elements. By an inclusion-exclusion argument, there are nr
′ −
∑k−1

j=0(−1)k−j
(
n
k−j
)
(k −

j)r
′
many r′-tuples from [n] with more than k distinct elements, which can be calculated in

polynomial time and is Θ(nr
′
). Summing over all relations R ∈ L, the total number of choices

in item 2 is Θ(nr). Thus the function c(n) which gives the number of elements of the preimage

is 2Θ(nr).

Now given an L′-structure M′ and structure M ∈ F−1(M′), the weight of M is equal to

the weight of M′ multiplied by the weight of L-relations on tuples of with more than k distinct

elements. Since there is free choice for all relations on these tuples, the total weight of F−1(M′)

is simply the sum over all ways to assign these relations, multiplied by the weight of M′, which

can be computed in polynomial time.

Finally, we show that M |= φ if and only if F (M) |= φ′. Suppose that M |= φ, and WLOG

that the domain of M is [n]. φ′ consists of two parts: one that is obtained by replacing L-atoms

in φ with the corresponding L′-atom, and a conjunction with sentences enforcing that every

R′ ∈ L′ is strictly r′-ary. By definition of F (M), the second part is automatically satisfied. For

the first part, let R′
i(x1, . . . , xr′) be the L′-atom corresponding to the atom ψi appearing in φ,

and let a ∈ [n]r
′
. By definition of F , a |= ψi(a) in M if and only if a |= R′

i(a) in M′, so since

the first part of φ′ is obtained from φ by replacing all the atoms ψi with the corresponding R′
i,

we can conclude that M′ |= φ′.

68

On the other hand, suppose that F (M) |= φ′. Then by the definition of F , M must have all

the correct behavior on all ψi. Since φ makes no restrictions on truth values of atoms involving

more than k variables, we can conclude that M |= φ.

IV.3 Weighted model counting for exponential growth rate classes

In this section, we prove a formula for the weighted first-order model count of theories whose

Skolemization falls into the exponential growth rate for hereditary properties. Laskowski and

Terry (36) prove that this growth rate is characterized by a very strong structural condition.

We analyze this structural result in order to obtain an explicit formula for the weighted model

count of the property.

Given an L-structure M and a, b ∈ M , define a ∼ b if and only if qftp(ab/(M \ {a, b}) =

qftp(ba/(M \ {b, a}); that is, for every quantifier-free formula φ(x1, . . . , xs) and m2, . . . ,ms ∈

M \ {a, b},

M |=
(
φ(a, b,m3, . . . ,mn) ↔ φ(b, a,m3, . . . ,mn)

)
∧
(
φ(a,m2, . . . ,ms) ↔ φ(b,m2, . . . ,ms)

)
.

As an example, if M is a graph, then a ∼ b if and only if the neighborhoods of a and b,

aside a and b themselves, are the same. It is straightforward to check that ∼ is an equivalence

relation. Let (a1, . . . , as), (b1, . . . , bs) ∈ M (s) such that ai ∼ bi for each i ∈ [s]. It is once again

straightforward to check that qftp(a) = qftp(b), i.e., the type of a tuple only depends on which

∼-classes of its elements.

69

Definition IV.3.1. A hereditary L-propertyH is basic if there is k ∈ N such that everyM ∈ H

has at most k ∼-classes.

In the proof of (36, Theorem 1.4), Laskowski and Terry implicitly show that a hereditary

property falls into the slowest growth rate of Theorem II.6.3 if and only if it is basic, and so we

will conflate the two conditions.

For the following definitions, let H be a basic hereditary property and fix a countable model

M |= TH. Since H is basic, M has finitely many ∼-classes; enumerate them as A1, . . . , Ak such

that 0 < |A1| ≤ · · · ≤ |Ak|—call this sequence the canonical decomposition of M.

Now, let t = max{i ∈ [k] | Ai is finite} and K = max{r, |At|}. Given any set X, let ΩM(X)

denote the set of ordered partitions (X1, . . . , Xk) of X such that:

(i) for each i ∈ [t], |Xi| = |Ai|, and

(ii) for each t < i ≤ k, |Xi| > K.

Notice that (A1, . . . , Ak) ∈ ΩM(M).

Definition IV.3.2. (36, Definition 2.5) Let N be an L-structure. We say that N is compatible

with M, and conversely that M is a template for N , if there is a partition (B1, . . . , Bk) ∈

ΩM(N) such that for every tuple (b1, . . . , bs) ∈ N (s) with bj ∈ Bij for each j ∈ [s], then

qftp(b) = qftp(a) for any (equivalently, every) a ∈M (s) such that aj ∈ Aij for each j ∈ [s].

Suppose that N is compatible with M as witnessed by the partition (B1, . . . , Bk) ∈ ΩM(N)

Then B1, . . . , Bk are the ∼-classes of N , and furthermore, N is isomorphic to a substructure

of M, so N ∈ H.

70

Let ℓ ∈ [k]s for some s ∈ N. We say that a tuple a ∈ N s has M-compatibility type ℓ if

ai ∈ Bℓi for each i ∈ [s]. Since the Bi’s are the ∼-classes of N , if a and b have the same

M-compatibility type, then ai ∼ bi for each i ∈ [s], and in particular qftp(a) = qftp(b) as noted

previously.

The following lemmas, due to Laskowski and Terry, shows that compatibility is first-order

definable and that compatibility with two templates (and hence by induction, any finite number)

can be reduced to compatibility with a single template.

Lemma IV.3.3. (36, Lemma 2.6) Let H be a basic hereditary property. There is a sentence

θM such that for any L-structure N , N |= θM if and only if N is compatible with M.

Lemma IV.3.4. (36, Lemma 2.13) Let H be a basic hereditary property. Suppose that M1,M2 |=

TH are countably infinite, and that θM1 ∧ θM2 is satisfiable. Then there is i ∈ {1, 2} such that

θM1 ∧ θM2 ≡ θMi.

For a countably infinite M |= TH, set H(M) := {N | N |= θM}. The next result follows

from the previous lemmas and a portion of the proof of (36, Theorem 2.14), and states that

there are finitely many templates such that H can be decomposed into the classes of structures

compatible with one of these templates.

Lemma IV.3.5. Let H be a basic hereditary property. For sufficiently large n, there are

countably infinite M1, . . . ,Mk |= TH such that the collection {H(M1), . . . ,H(Mk)} is pairwise

disjoint and

Hn =

k⊔
i=1

H(Mi)n.

71

Proof. Every countably infinite model of TH must be compatible with itself. Hence the following

set of sentences is inconsistent:

TH ∪ {¬θM | M |= TH, M countably infinite} ∪ {∃x1 . . . ∃xn
∧
i ̸=j

xi ̸= xj | n ≥ 1}.

Then by compactness, there are finitely many θM1 , . . . , θMk
such that for sufficiently large n,

for any N ∈ Hn, N |=
∨k
i=1 θMi . It immediately follows that Hn ⊆

⋃k
i=1H(Mi). Additionally,

since any finite model compatible with Mi must also be in H, we have that in fact Hn =⋃k
i=1H(Mi). Notice that a priori, the properties H(Mi) may not be disjoint. However, we

can easily force these properties to be disjoint.

Let 1 ≤ i, j ≤ k. If θMi ∧ θMj is satisfiable, then by Lemma IV.3.4, (without loss of

generality) θMi |= θMj . Thus H(Mi) ⊆ H(Mj), and we can remove H(Mi) from our collection

of properties. Otherwise, θMi ∧ θMj is not satisfiable, and therefore H(Mi) and H(Mj) are

already disjoint. So we may indeed assume that the properties are all disjoint, and conclude

that

Hn =

k⊔
i=1

H(Mi)n.

As a consequence, in order to find the weighted model count of a basic hereditary property

H, it suffices to find the weighted model count of H(M)n for a finite collection of countably

infinite models M |= TH.

72

Proposition IV.3.6. Let H be a basic hereditary property, and suppose that M |= TH is

countably infinite and has k ∼-classes. Then there are t,K ∈ N and c ∈ Nt such that

WFOMC(H(M), n, w) =
∑

dt+1,...,dk>K∑
ci+

∑
dj=n

(
n

c,d

) ∏
R∈L

w(R)pR,d(n),

where pR,d(n) is a polynomial depending only on R and d of degree at most the arity of R.

Proof. Let A1, . . . , Ak be the canonical decomposition of M, with t = max{i ∈ [k] | Ai is finite}

and K = |At|. For i ∈ [t], let ci = |Ai|. Suppose that N is compatible with M, witnessed by

partition (B1, . . . , Bk) ∈ ΩM(N). For t+ 1 ≤ i ≤ k, set di := |Bi|.

To find w(N), it suffices to find the weight contributed by each relation R ∈ L and take

the product over all relations. Fix R ∈ L, and let s be the arity of R. Since for every ℓ ∈ [k]s,

every tuple with M-compatibility type ℓ has the same type, we can define

CR := {ℓ ∈ [k]s | R holds on some (every) a ∈ N s with M-compatibility type ℓ}.

Every tuple a ∈ N s some M-compatibility type, and R will hold on a if and only if its

M-compatibility type is in CR, so if we let nℓ denote the number of tuples that have M-

compatibility type ℓ, then the weight contributed by R can be written as

∏
ℓ∈CR

w(R)nℓ

73

The exponent of w(R) in the above expression can be written as

∑
ℓ∈CR

nℓ,

which is what we will analyze to keep the notation simple. Fix ℓ ∈ [k]s. For simplicity of

notation, let bi = ci if i ∈ [t], and let bi = di if t + 1 ≤ i ≤ k. Tuples with M-compatibility

type ℓ are such that the i-th coordinate is in Bℓi , which has size bℓi , and so nℓ =
∏s
i=1 bℓi . If

ℓi ≤ t, then bℓi = cℓi is a constant, and if ℓi > t, then we can rewrite dℓi = n − d′ℓi for some

d′ℓi ∈ [n]. Thus nℓ can be written as a polynomial in n of degree at most s that only depends

on the values dt+1, . . . , dk. CR has size at most ks, which is a constant with respect to n, so

summing over all ℓ ∈ CR, we find that the exponent of w(R) is also a polynomial of degree at

most s depending only on dt+1, . . . , dk, which we will denote pR,d(n).

Taking the product over all relations, we find that

w(N) =
∏
R∈L

w(R)pR,d(n).

Notice that this value depends only on d, which is the sizes of the unbounded parts in the

partition witnessing that N is compatible with M, and not on any other information about N .

Now, fix values dt+1, . . . , dk with dj > K for each j such that
∑
ci +

∑
dj = n. Any

model N ∈ H(M)n with ∼-classes of sizes exactly c1, . . . , ct, dt+1, . . . , dk will have weight∏
R∈Lw(R)

pR,d(n). Since a model in H(M)n is exactly determined by the choice of which

74

elements of [n] are in each ∼-class, there are
(
n
c,d

)
many ways to choose an N as above. Sum-

ming over all possible choices of the tuple d, we find that

WFOMC(H(M), n, w) =
∑

dt+1,...,dk>K∑
ci+

∑
dj=n

(
n

c,d

) ∏
R∈L

w(R)pR,d(n).

IV.4 Weighted model counting for minimal fast-growth classes

In (15), Bollobás and Thomason give a characterization of “minimal” hereditary classes of

graphs in the fastest growth rate. This characterization allows for efficient computation of the

weighted model count of such minimal classes.

Definition IV.4.1. Let 0 ≤ s ≤ r be integers. A graph G = (V,E) is called (r, s)-colorable if

there exists a partition of V into V1, . . . , Vr such that V1, . . . , Vs are cliques, and Vs+1, . . . , Vr

are independent sets.

Define

Cn(r, s) := {H | |H| = n and H is (r, s)-colorable}

and

C(r, s) :=
∞⋃
n=1

Cn(r, s).

75

Definition IV.4.2. Given a hereditary property of graphs H, define the coloring number of

H, denoted r(H) to be

r(H) := max{r | for some s, C(r, s) ⊆ H}.

That is, r(H) is the largest value of r such that H contains all (r, s)-colorable graphs for some

value of s.

Theorem IV.4.3. (15, Theorem 4) Let H be a non-trivial hereditary property of graphs, and

let cn be the sequence of numbers such that |Hn| = 2cn(
n
2). Then

lim
n→∞

cn = 1− 1

r(H)
.

This theorem leads to a characterization of minimal hereditary properties of graphs in the

fastest class in the following sense: given integers 0 ≤ r ≤ s, the class C(r, s) is a hereditary

property of graphs whose speed is 2Θ(1−1/r)(n2), and any proper sub-hereditary property of

C(r, s) has speed at most 2Θ(1−1/(r−1))(n2). In particular, if r = 2, any proper sub-hereditary

property of C(2, s) is not in the fastest growth rate. The three values for s of 0, 1, and 2

correspond to what are known in the graph theory literature as co-bipartite, split, and bipartite

graphs, respectively. That is, a hereditary property of graphs is not in the fastest speed if and

only if it omits a bi-partite graph, a co-bipartite graph, and a split graph.

To simplify the counting problem, we will consider colored graphs instead of colorable

graphs. We work in the language L(r,s)−col
Gr consisting of a binary relation E and unary predicates

76

P1, . . . Pr, where the weights of each of the Pi’s is 1. Consider the class Ccol(r, s) of all L(r,s)−col
Gr -

structures such that E is a graph relation, the sets P1, . . . , Ps are cliques, and Ps+1, . . . Pr are

cliques (i.e., (r, s)-colorable graphs where the coloring is given by the sets P1, . . . , Ps). It is

straightforward to check that this class is closed under isomorphism and substructure, so it is

a hereditary property.

Theorem IV.4.4. Let 0 ≤ s ≤ r. WFOMC(Ccol(r, s), n, w) can be computed in polynomial time

for any weight w ∈ R for the edge relation.

Proof. We first consider how to construct a (r, s)-colored graph on the vertex set [n]. First,

we must decide the partition of [n]. We can do this by first choosing a vector of non-negative

integers k = (k1, . . . , kr) such that
∑r

i=1 ki = n, which will be the sizes of the each of parts of

the partition. Then, we can choose a k-partition of [n] into sets P1, . . . , Pr. There are
(

n
k1,...,kr

)
ways to do this. Once we have the partition, we set P1, . . . , Ps to be independent sets and

Vs+1, . . . , Vr to be cliques. On the other hand, for each pair of vertices in distinct parts Pj and

Pk, we can freely choose whether or not it has an edge. There are
∑

0≤j<ℓ≤r
kjkℓ many such pairs

of edges. For ease of notation, let mk denote the quantity
∑

0≤j<ℓ≤r kjkℓ. Then to finalize the

choice of a graph, we must choose a number i between 0 and mk, then choose a subset of i

edges to include. The number of edges in this graph is

i+
r∑

j=s+1

(
kj
2

)
,

77

and so the weight of this graph is

w
i+

r∑
j=s+1

(kj
2
)
= wi

r∏
j=s+1

w(
kj
2
).

Summing over all the ways to construct a graph, we find that

WFOMC(Ccol(r, s), n, w) =
∑

k1+···kr=n

(
n

k

) mk∑
i=0

(
mk

i

)
wi

r∏
j=s+1

w(
kj
2
).

In the innermost product, each kj is upper bounded by n, so the exponentiation can be done

in time polynomial in n. The product is taken over a constant number (r− s) of factors. Inside

the inner summation, all values are upper bounded by n2, so these operations are once again

polynomial in n, and the sum is taken over a value that is O(n2). The multinomial coefficient(
n
k

)
can be computed in polynomial time, and the outer sum is taken over fewer than nr terms,

so the entire expression can be computed in polynomial time.

IV.5 The FO2 Case

In this section, we investigate the model counting problem in the restricted setting of FO2.

We first isolate a property of FO2 that has been implicitly used in all prior analyses of

the model counting problem, which essentially states that for models of an FO2 sentence,

after conditioning on the partition of the domain into the 1-types, the 2-type of all pairs are

78

completely independent of each other. We also extend to the ordered case, in which conditioning

on the 1-types as well as the ordering results in the 2-types being independent.

Lemma IV.5.1. Let φ be a universal FO2 L-sentence. Let M,N |= φ, both with domain [n].

Suppose that a ̸= b ∈ [n] such that qftpM(a) = qftpM(b) = qftpN (a) = qftpN (b). Then the

structure M′ obtained from M by only changing the type of ab to be qftpN (ab) is also a model

of φ.

Furthermore, suppose that L contains a binary relation symbol ≤, that M and N addi-

tionally satisfy LO(≤), where LO(≤) are the axioms stating that ≤ is a linear order, and that

M,N |= a < b. Then M′ |= φ ∧ LO(≤) as well.

Proof. First, convert φ into a universally quantified full DNF; i.e.,

φ = ∀x∀y
ℓ∨

k=1

m∧
j=1

ψj(x, y)
tjk ,

where ψj ranges over all L-atoms involving at most two variables, for some ℓ and truth values

tij . In particular, we can write φ as

φ = ∀x∀y
ℓ∨

k=1

qk(x, y),

where each qk is a complete 2-type. Notice that for each qk(x, y), the type qoppk (x, y) must also

appear in φ, since if qk(a, b) holds in a model of φ, then qoppk (b, a) holds as well.

Since M,N |= φ, there are values 1 ≤ i, j ≤ ℓ such that M |= qi(a, b) and N |= qj(a, b). By

assumption, qi and qj must both specify the same 1-types for x and y. Now, let M′ be obtained

79

from M by only changing the type of ab to be qj—in particular, the only change is on relations

from a to b. To check that M′ |= φ, let c, d ∈ [n]. If c = a and d = b, then M′ |= qj(c, d),

and so M′ |=
∨ℓ
k=1 qk(c, d). If c = b and d = a, then the same reasoning applies, only with

qoppj . Otherwise, at least one of c ̸= a and d ̸= b is true. Since M |= φ, there is 1 ≤ k ≤ ℓ such

that M |= qk(c, d). Notice that no 1-types were changed between M and M′, so any unary

atoms in qk still hold of c and d in M′. Also, the only binary atoms that differ between M

and M′ are from a to b (or vice versa), so since at least one of c and d is distinct from a and

b, none of the values of binary atoms from c to d could have changed, and so M′ |= pk(c, d),

and so M′ |=
∨ℓ
k=1 qk(c, d). Therefore, we can conclude that M′ |= ∀x∀y

∨ℓ
k=1 qk(c, d), which

is simply φ.

For the furthermore, we once again only need to consider whether or notM′ |=
∨ℓ
k=1 qk(a, b).

Since the information that a < b is contained in qi and qj , the exact same reasoning works in

this case as well.

IV.5.1 Unweighted counting dichotomy for FO2

In this subsection, we utilize the proof technique for polynomial-time computability of

WFOMC for FO2 sentences done by Beame, van den Broeck, Gribkoff, and Suciu (12) to

prove a dichotomy theorem for the unweighted model count for universal FO2 formulas. This

strengthens Theorem II.6.3 by stating that for universal FO2 sentences, the speed of the asso-

ciated hereditary property must fall into either the slowest or fastest growth rates. Along the

80

way, we prove a formula for FOMC for FO2 sentences similar to (39, Theorem 1); however, our

notation and terminology differs somewhat, so we will write out all the details for clarity.

Theorem IV.5.2. Let φ be a universal FO2 sentence. Then FOMC(φ, n) is either in the slowest

growth class (i.e., of the form
∑k

i=1 pi(n)i
n for sufficiently large n, where the pi’s are rational

polynomials), or FOMC(φ, n) is in the fastest growth class (i.e., FOMC(φ, n) = 2Cn
r+o(nr) for

sufficiently large n and some constant C, where r is the maximum arity of L).

Proof. First, consider the case that r > 2. By Lemma IV.2.2, there is a language L′, universal

FO2 L-sentence, and function c : N → N with c(n) = 2Θ(nr) such that there is a c(n)-to-one

function F from L-structures with domain [n] to L′-structures with domain [n]. Automatically

this implies that FOMC(φ, n) is at least 2Ω(nr) and so in the fastest growth class.

Next, we can consider the case that r = 2. We may assume that φ is written as a universally

quantified full DNF; i.e.,

φ = ∀x∀y
ℓ∨

k=1

m∧
j=1

ρj(x, y)
tjk ,

where ρj ranges over all L-atoms involving at most two variables, for some ℓ and values tij ∈

{0, 1}. In particular, we can write φ as

φ = ∀x∀y
ℓ∨

k=1

qk(x, y),

where each qk is a complete 2-type.

Fix n. In order to construct a model of φ with domain [n], we can first decide the 1-type

of each element of [n]. Let p1, . . . , pm denote the possible 1-types that can be formed in L. If

81

we assume that pi(a) and pj(b) hold for some a, b ∈ [n] and 1 ≤ i, j ≤ m, this rules out certain

possible 2-types for ab from the entire collection of qk’s. Let

Iij := {k ∈ [ℓ] | qk(x, y) is consistent with pi(x) ∧ pj(y)},

and let

tij := |Iij |

(note that it is possible that Iij is empty, so tij = 0). With this notation, we can say that the

pair (a, b) must satisfy
∨
k∈Iij

qk(a, b). That is, the 2-type of ab is chosen from the values qk where

k ∈ Iij . By Lemma IV.5.1, these choices are all independent. Thus, to count the number of

models of φ, we simply need to find the total number of ways to make all of the above choices.

First, deciding the 1-type of each element is equivalent to choosing an ordered partition of [n]

into m parts. This is counted by choosing a tuple k = (k1, . . . , km), then choosing a k-partition

(C1, . . . , Cm) of [n], which can be expressed as

∑
∑
ki=n

(
n

k

)
.

For convenience of notation, for every 1 ≤ i ≤ j ≤ m, let

kij =


kikj if i ̸= j

(
ki
2

)
if i = j

,

82

i.e., kij is the number of pairs between elements in Ci and Cj .

Now for each 1 ≤ i ≤ j ≤ m, we must choose the 2-type of all pairs ab where a ∈ Ci and

b ∈ Cj . For each pair, there are tij-many choices for the 2-type, which are all independent, and

there are kij-many pairs. Thus for fixed i, j, there are t
kij
ij possible choices.

Therefore, the formula for FOMC(φ, n) is

∑
∑
ki=n

(
n

k

) ∏
1≤i≤j≤m

t
kij
ij

We will condition on the values of tij to compute the model count.

First, suppose that for some values i < j, tij > 1, tii ̸= 0, and tjj ̸= 0. Then if we choose

ni = nj =
n
2 and let all other values ni′ be 0, this gives a term in the sum of the form

(
n
n
2

)
t
(n/2

2)
ii t

(n/2
2)

jj t
n2/4
ij .

Notice that this term will be at least t
n2/4
ij = 2Cn

2
for some constant C. Hence the model count

will fall into the fastest growth class.

Alternatively, suppose that for some value i, tii > 1. Then if we choose ni = n and let all

other values ni′ be 0, then the formula for FOMC(φ, n) will contain a term of the form

(
n

n

)
t
(n2)
ii

83

which is at least 2Cn
2
for some constant C. So again the model count will fall into the fastest

growth class.

If neither of the above cases hold, then for all i, either tii = 0 or tii = 1, and if tii = tjj = 1,

then tij = 1 as well. Thus every non-zero term of the formula for FOMC(φ, n) will be of the

form (
n

k

)
,

and so FOMC(φ, n) is upper bounded by

∑
∑
ki=n

(
n

k

)
= mn = 2O(n).

Therefore, the model count falls into the slowest growth class.

IV.5.2 Weighted model counting for FO2

In the previous subsection, we showed that for univeral FO2 sentences, there is a sharp

dichotomy in the growth rate of the unweighted model count, and hence a dichotomy in the

structural conditions on the hereditary properties definable by such sentences. In particular,

suppose that we are dealing with only a single graph relation E. Then the only statements

expressible in FO2 are 1) ∀x∀y E(x, y), 2) ∀x∀y ¬E(x, y), and 3) ∀x∀y(E(x, y) ∨ ¬E(x, y)).

That is, the hereditary property must be 1) only complete graphs, 2) only empty graphs, or 3)

all graphs. All three of these hereditary properties have extremely easy-to-compute weighted

model counting problem. Extending this idea, we give an alternate proof of polynomial-time

computability of WFOMC for FO2 sentences by converting any FO2 sentence into one involving

84

only unary relations and binary relations that are enforced to be symmetric and irreflexive. This

allows for a more precise version of the formula for the weighted model count.

By Lemma IV.2.2, we may assume that we are working in a language with only unary and

binary relations. The first step is to reduce the problem to one where every binary relation is

a graph relation (irreflexive and asymmetric). To do this, we will need to use a linear order

relation. While the axioms for a linear order are not expressible in FO2, we will see later how to

introduce a linear order in a way that preserves the computational complexity of the weighted

model counting problem. We will say that a structure M is irreflexive or symmetric if in M,

every binary relation is irreflexive or symmetric, respectively, except for the relation ≤ if it is

in L.

Lemma IV.5.3. Let (L, w) be a weighted language of maximum arity 2 that contains a distin-

guished binary relation symbol ≤ of weight 1, and let ψ be a sentence of the form LO(≤) ∧ φ,

where φ is FO2 and enforces that every binary relation is strictly binary. There is a weighted

language (Lsym, wsym) of maximum arity 2 which contains ≤ and an Lsym-sentence ψsym =

LO(≤) ∧ φsym with φsym in FO2 such that:

1. every model of ψsym is irreflexive and symmetric, and

2. there is a bijection F taking irreflexive and symmetric Lsym-structures which are totally

ordered by ≤ to irreflexive L-structures which are totally ordered by ≤, such that for any

Lsym-structure Msym,

(a) F (Msym) has the same domain as Msym, and ≤Msym
= ≤F (Msym),

85

(b) Msym |= ψsym ⇐⇒ F (Msym) |= ψ, and

(c) wsym(Msym) = w(F (Msym)).

In particular, WFOMC(ψ,w, n) = WFOMC(ψsym, wsym, n).

Proof. By Theorem II.5.1, we may assume that φ is a universal sentence. Write φ as a univer-

sally quantified full DNF, i.e.,

φ = ∀x∀y
ℓ∨

k=1

qk(x, y),

where each qk is a complete 2-type. By factoring out the atoms x < y, x = y, and x > y, we

can write φ as

φ = ∀x∀y

(
(x < y) →

ℓ2∨
k=1

qk(x, y)

)

∧

(x > y) →
ℓ′2∨
k=1

q′k(x, y)


∧

(x = y) →
ℓ1∨
j=1

pj(x)

 ,

where now each qk and q′k is a 2-type involving all non-order atoms, and each pj is a complete

1-type. It must be the case that ℓ2 = ℓ′2 and {q′k | k ∈ [ℓ2]} = {qoppk | k ∈ [ℓ2]}. To see

this, for each k ∈ [ℓ2], there must be some model of ψ and elements a < b of that model such

that ab |= qk(x, y). Since b < a, there must be k′ ∈ [ℓ′2] such that ba |= q′k′(x, y). However,

qftp(ba) = qftp(ab)opp, which implies that q′k′ = qoppk . A similar argument works in the other

direction, so every type qk is the opposite of some other type q′k′ and vice versa.

86

Let R1, . . . , Rm enumerate the binary relations of L other than ≤, and expand out each

qk as qk = pkx(x) ∧ pky(y) ∧
∧m
i=1

(
Ri(x, y)

txyik ∧Ri(y, x)t
yx
ik

)
, for some values kx, ky ∈ [ℓ1] and

txyik , t
yx
ik ∈ {0, 1}. Then we can write ψ as

LO(≤) ∧ ∀x∀y

[
(x < y) →

ℓ2∨
k=1

(
pkx(x) ∧ pky(y) ∧

m∧
i=1

(
Ri(x, y)

txyik ∧Ri(y, x)t
yx
ik

))]
[
(x > y) →

ℓ2∨
k=1

(
pkx(y) ∧ pky(x) ∧

m∧
i=1

(
Ri(y, x)

txyik ∧Ri(x, y)t
yx
ik

))]

∧

(x = y) →
ℓ1∨
j=1

pj(x)

 ,
(IV.1)

with the second line coming from the fact that the types q′k are obtained by interchanging x

and y in the types qk.

For each i = 1, . . . ,m, let R<i and R>i be new binary relation symbols. Let L≤ consist of

the unary relation symbols of L, the relation symbols R<i and R>i for each i, and the symbol

≤.

87

Now, let ψsym be the following sentence:

LO(≤) ∧ ∀x∀y

[
(x < y) →

ℓ2∨
k=1

(
pkx(x) ∧ pky(y) ∧

m∧
i=1

(
R<i (x, y)

txyik ∧R>i (x, y)
tyxik

))]

∧

[
(x > y) →

ℓ2∨
k=1

(
pkx(y) ∧ pky(x) ∧

m∧
i=1

(
R>i (x, y)

txyik ∧R<i (x, y)
tyxik

))]

∧

(x = y) →
ℓ1∨
j=1

pj(x)


∧

[
m∧
i=1

(R<i (x, y) ↔ R<i (y, x)) ∧ (R>i (x, y) ↔ R>i (y, x))

]
(IV.2)

The first two lines of (Equation IV.2) state that R<i and R>i reflect the behavior of Ri going

from lesser elements to greater elements and greater elements to lesser elements, respectively,

while the third line maintains the behavior of ψ on unary relations, and the fourth line enforces

that all binary relations are symmetric. Also, notice that in the first two lines, for greater

uniformity, we change the order of the variables in the last atom from (y, x) to (x, y), which we

may do since we enforce that all binary relations are symmetric. Since the 1-types p1, . . . , pj

all state that binary relations (other than ≤) are irreflexive, ψsym also still enforces that every

binary relation is irreflexive.

We note that it is not strictly neccesary to include the second lines in our forms for both ψ

and ψsym, since the information contained in them is actually captured in the first lines already.

However, including these lines will make some of the later analysis simpler.

To define F , let Msym be an irreflexive and symmetric Lsym-structure that is totally ordered

by ≤. We define an L-structure M on the same domain as Msym with the same behavior

88

as Msym for unary relations and ≤. For each relation Ri ∈ L and pair a, b ∈ M , we set

M |= Ri(a, b) if and only if Msym |= (a < b∧R<i (a, b))∨(a > b∧R>i (a, b)). Set F (Msym) = M.

This operation is invertible: given an L-structure M, let Msym be an Lsym-structure on the

same domain with the same behavior of unary predicates and ≤. Set Msym |= R<i (a, b) if and

only if M |= (a < b∧Ri(a, b))∨ (a > b∧Ri(b, a)). It is straightforward to check that this gives

an inverse to F .

Now, suppose that Msym |= ψsym. Let M = F (Msym). We must check that M |= ψ. By

definition, M |= LO(≤). Let a, b ∈ M . If a = b, then since Msym |=
∨ℓ1
j=1 pj(x), it must be

that pj(a) holds for some j ∈ [ℓ1], and so a satisfies the third line of (Equation IV.1). Now

suppose a < b. Since Msym |= ψsym, there is some k ∈ [ℓ2] such that Msym |= pkx(a)∧ pky(b)∧∧m
i=1

(
R<i (a, b)

txyik ∧R>i (a, b)t
yx
ik

)
. By tracing the definition of F , we can find that M |= pkx(a)∧

pky(b)∧
∧m
i=1

(
Ri(a, b)

txyik ∧Ri(b, a)t
yx
ik

)
, and so ab satisfies the first line of (Equation IV.1). Since

the the second line of (Equation IV.1) is the same as the first line with the roles of x and y

swapped, the case that a > b is also covered. Hence M |= ψ. A similar argument shows that

M |= ψ ⇒ Msym |= ψsym.

Finally, we define wsym and prove that condition 2(c) holds. Let wsym take the same value

as w on all unary relations, and set wsym(R<i) = wsym(R>i) =
√
w(Ri) for each i ∈ [m]. Given

an Lsym-structure Msym, M = F (Msym), and pair a < b ∈ M , M |= Ri(a, b) if and only if

Msym |= R<i (a, b)∧R
<
i (b, a). Hence M |= Ri(a, b) contributes a factor of w(Ri) to w(M) if and

only if Msym |= R<i (a, b)∧R
<
i (b, a) contributes a factor of w(R<i)

2 = w(Ri) to w
sym(Msym). A

similar argument works for R>i when a > b, and since the two structures have the same behavior

89

on unary predicates and w,wsym assign the same weights to unary predicates, we conclude that

w(M) = wsym(Msym).

Next, we introduce some tools for computing weighted sums of binary relations.

Definition IV.5.4. Let (L, w) be a weighted language, s ∈ N and ϕ(x, y) be a quantifier-free

formula in two variables. Define WFOMC2(ϕ, s, w) to be the weighted sum of all ways to assign

binary relations appearing in ϕ, on s pairs independently such that each pair ab satisfies ϕ(a, b).

Definition IV.5.5. Let ϕ(x, y) be a quantifier-free formula in two variables. Given a con-

junction of binary literals q, construct a new formula as follows. For each positive literal

R(x, y) appearing in q, replace all instances of R(x, y) in ϕ with ⊤, and for each negative literal

¬R(x, y) appearing in q, replace all instances of R(x, y) in ϕ with ⊥. Denote this new formula

as ϕ(x, y | q).

The previous definition can be considered a form of “conditioning” a formula on the infor-

mation given in q. We’ll illustrate these definitions with an example. Let L = {R1, R2}, with

w(R1) = 2, w(R2) = 2, and

ϕ = (R1(x, y) ∨R2(x, y)) ∧ (R1(x, y) ↔ R1(y, x)) ∧ (R2(x, y) ↔ R2(y, x)).

Then

ϕ(x, y | R1(x, y)) ≡ R2(x, y) ↔ R2(y, x),

90

while

ϕ(x, y, | ¬R1(x, y)) ≡ R2(x, y) ∧R2(y, x).

Furthermore, WFOMC2(ϕ(x, y, | R1(x, y)), s, w) = 3s since on all s pairs, R2 can either hold

or fail, so the total weight is
∑s

t=0

(
s
t

)
2t = 3s, while WFOMC2(ϕ(x, y, | ¬R1(x, y)), s, w) = 2s,

since on every pair, R2 must hold. In both cases, the weight of R1 is ignored since it has been

eliminated when conditioning ϕ on the value of R1.

Lemma IV.5.6. Let (L, w) be a weighted language and let ϕ(x, y) be a quantifier-freeformula

in two variables that enforces that every binary relation is symmetric (i.e., of the form ϕ′(x, y)∧∧
R∈LR(x, y) ↔ R(y, x) for some quantifier-free ϕ′). Then there is a constant wϕ ∈ R such

that for any s ∈ N, WFOMC2(ϕ, s, w) = wsϕ. Furthermore, for fixed ϕ, wϕ can be computed in

constant time, and thus WFOMC2(ϕ, s, w) can be computed in time polynomial in s.

Proof. We proceed by induction on the number of relations that appear in ϕ.

Suppose that only one relation E appears in ϕ. Then by converting ϕ to a DNF, ϕ must

be one of E(x, y), ¬E(x, y), and E(x, y) ∨ ¬E(x, y). Then WFOMC2(ϕ, s, w) is w(E)s, 1, or∑s
t=0

(
s
t

)
w(E)t = (w(E) + 1)s (by the binomial theorem), respectively. Hence we can take wϕ

to be w(E), 1, or (w(E) + 1), depending on which case we are in.

Now, suppose that relations E1, . . . , Em appear in ϕ. If ϕ(x, y) ∧ Em(x, y) is inconsistent,

then we may replace all instances of Em in ϕ with ⊥, which gives a formula with one fewer rela-

tion, and so we may apply induction. Similarly, we may apply induction if ϕ(x, y)∧¬Em(x, y) is

inconsistent by replacing all instances of Em with ⊤. So we may assume that it is consistent with

91

ϕ for either Em or ¬Em to hold on a pair. We consider all ways to choose assignments of the bi-

nary relations on the pairs, starting by choosing the pairs for which Em holds. For any sm ∈ [s],

there are
(
s
sm

)
-many ways to choose sm pairs on which Em will hold. These pairs will contribute

w(Em)
sm weight to the assignment. Once we have chosen these pairs, we must choose the assign-

ments for the remaining relations. For the sm-many pairs on which Em holds, the total weighted

count of the assignments of remaining relations is given by WFOMC(ϕ(x, y | Em), sm, w), while

for the remaining pairs, the weighted count is given by WFOMC(ϕ(x, y | ¬Em), s − sm, w).

Notice that ϕ(x, y | Em) and ϕ(x, y | ¬Em) both involve one fewer relation than ϕ, so by in-

duction, we can rewrite WFOMC(ϕ(x, y | Em), sm, w) =
(
wϕ(x,y|Em)

)sm and WFOMC(ϕ(x, y |

¬Em), s− sm, w) =
(
wϕ(x,y,|¬Em)

)s−sm . Since all assignments are independent between distinct

pairs, the total weight of all assignments where Em holds on the chosen sm-many pairs is the

products of all of these weights, i.e. w(Em)
sm
(
wϕ(x,y|Em)

)sm (wϕ(x,y,|¬Em)

)s−sm . Summing over

all choices of sm and the ways to choose the sm-many pairs for which Em holds, we find that

WFOMC2(ϕ, s, w) =
s∑
sm

(
s

sm

)
w(Em)

sm
(
wϕ(x,y|Em)

)sm (wϕ(x,y,|¬Em)

)s−sm
=
(
wϕ(x,y|¬Em)

)s s∑
sm

(
s

sm

)(
w(Em)wϕ(x,y|Em)

wϕ(x,y|¬Em

)sm
=
(
wϕ(x,y|¬Em)

)s(w(Em)wϕ(x,y|Em)

wϕ(x,y|¬Em

+ 1

)s
=
(
w(Em)wϕ(x,y,|Em) + wϕ(x,y,|¬Em)

)s
,

so we may take wϕ = w(Em)wϕ(x,y,|Em) + wϕ(x,y,|¬Em).

92

Theorem IV.5.7. Let φ be a FO2 sentence. Then WFOMC(φ, n,w) is computable in polyno-

mial time.

Proof. Let ≤ be a binary relation symbol not in L. By Lemma IV.2.2, we may assume that φ

enforces that every binary relation is irreflexive. Let L≤ := L ∪ {≤} and define w≤ : L≤ → R

as follows: w≤|L = w and w≤(≤) = 1. Notice that the models of ψ := φ ∧ LO(≤) are

exactly the models of φ with ≤ chosen to be an arbitrary ordering of the domain elements.

Moreover, the weight of such a model is the same as its reduct to L. Hence WFOMC(ψ, n,w≤) =

WFOMC(φ, n,w) · n!, and so it suffices to compute WFOMC(ψ, n,w≤) in polynomial time.

We want to apply Lemma IV.5.3, but even more can be said in this case. Since φ does not

use the symbol ≤, when writing ψ in the form (Equation IV.1), we may write it so that first

two rows are identical except for x < y and x > y. Hence, after applying the transformation in

Lemma IV.5.3, we may assume that ψ takes the following form:

LO(≤) ∧ ∀x∀y

[
(x < y) →

ℓ2∨
k=1

(
pkx(x) ∧ pky(y) ∧

m∧
i=1

(
R<i (x, y)

txyik ∧R>i (x, y)
tyxik

))]

∧

[
(x > y) →

ℓ2∨
k=1

(
pkx(x) ∧ pky(y) ∧

m∧
i=1

(
R>i (x, y)

txyik ∧R<i (x, y)
tyxik

))]

∧

(x = y) →
ℓ1∨
j=1

pj(x)


∧

[
m∧
i=1

(R<i (x, y) ↔ R<i (y, x)) ∧ (R>i (x, y) ↔ R>i (y, x))

]
,

(IV.3)

with the difference between (Equation IV.3) and (Equation IV.2) being that in the second line,

we no longer need to swap the role of x and y in the 1-types.

93

Now to compute WFOMC(ψ, n,w≤), we first want to construct the models of ψ. By (55,

Corollary 1), we may assume that the domain [n] is ordered as 1 ≤ 2 ≤ · · · ≤ n. The full

weighted model count is then the value for this particular ordering multiplied by n!.

Let k be a tuple such that
∑
ki = n, and fix a k-partition of [n] into C1, . . . , Cℓ1 so that

every element of Ci is assigned type pi. By Lemma IV.5.1, given the ordering and the partition

(C1, . . . , Cℓ1 , the choices of 2-types for each pair are independent from one another, so it suffices

to compute the weighted sum of assignments of binary relations that are consistent with ψ over

every pair, and take the product of all these values.

Fix values i < j ∈ [ℓ1], and let

Iij := {k ∈ [ℓ2] | kx = i ∧ ky = j},

that is, Iij is the collection of indices k for which pi(x) and pj(y) appear in the disjuncts in

the first line of (Equation IV.2). The symmetry of the set of types {qk | k ∈ [ℓ2]} implies that

Iij = Iji: if k ∈ Iij , then pi(x), pj(y) ∈ qk. Then Let a ∈ Ci and b ∈ Cj . If a < b, then in any

model of ψ,

(a, b) |=
∨
k∈Iij

m∧
i=1

(
R<i (x, y)

txyik ∧R>i (x, y)
tyxik

)

On the other hand, if a > b, then

(a, b) |=
∨
k∈Iij

m∧
i=1

(
R>i (x, y)

txyik ∧R<i (x, y)
tyxik

)

94

Since R<i and R>i have the same weight, the total weight in of all disjuncts in both of the above

formulas are equal. Hence the weight of relations on ab only depends on the fact that a ∈ Ci

and b ∈ Cj , and not on the order. Therefore, without loss of generality we may assume that

a < b, and so

(a, b) |=
∨
k∈Iij

m∧
i=1

(
R<i (x, y)

txyik ∧R>i (x, y)
tyxik

)
. (IV.4)

At this point, it does not matter if a given binary relation is of the form R<i or R>i , so re-label

all the binary relations as E1, . . . , Em′ , which are all enforced to be irreflexive and asymmetric.

Thus (Equation IV.4) can be rewritten as

(a, b) |=
∨
k∈Iij

m′∧
i=1

Ei(x, y)
tik , (IV.5)

where each tik is a value in {0, 1}. Let

ϕij(x, y) :=
∨
k∈Iij

m′∧
i=1

Ei(x, y)
tik ,

and let

kij :=


kikj if i ̸= j

(
ki
2

)
if i = j

,

i.e., the number of pairs between elements in Ci and Cj . Then the weighted sum of all as-

signments of the binary relations to pairs between Ci and Cj consistent with ψ is given by

WFOMC2(ϕij , kij , w), which by Lemma IV.5.6 is of the form w
kij
ϕij

.

95

ByLemma IV.5.1, the assignments for varying values of i and j are independent, so the total

weighted sum of all models of φ whose partition of 1-types is C1, . . . , Cℓ1 is

ℓ1∏
i=1

w(pi)
ki ·

∏
1≤i≤j≤ℓ1

w
kij
ϕij
,

where w(pi) is the product of the weights of all unary relations that hold in pi. Since this value

only depends on the size of the parts, and not on the parts themselves, the overall weighted

model count can be found by

∑
∑
ki=n

(
n

k

) ℓ1∏
i=1

w(pi)
ki ·

∏
1≤i≤j≤ℓ1

w
kij
ϕij
,

which, since w(pi) and wϕij are constants not depending on n, is computable in polynomial

time.

This gives the weighted model count of models of ψ where the ordering of the domain is

1 ≤ · · · ≤ n. As noted, WFOMC(ψ, n,w≤) is this value multiplied by n!. However, we also know

that WFOMC(ψ, n,w≤) = WFOMC(φ, n,w) · n!, so WFOMC(φ, n,w) is also this same quantity

and thus is computable in polynomial time.

CITED LITERATURE

1. Alon, N., Bun, M., Livni, R., Malliaris, M., and Moran, S.: Private and online learnability
are equivalent. J. ACM, 69(4), aug 2022.

2. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput., 75:87–
106, 1987.

3. Angluin, D. and Dohrn, T.: The power of random counterexamples. In Proceedings of
the 28th International Conference on Algorithmic Learning Theory, eds, S. Han-
neke and L. Reyzin, volume 76 of Proceedings of Machine Learning Research, pages
452–465. PMLR, 15–17 Oct 2017.

4. Angluin, D. and Fisman, D.: Learning regular omega languages. Theoretical Computer
Science, 650:57–72, 2016. Algorithmic Learning Theory.

5. Balcázar, J. L., Castro, J., Guijarro, D., and Simon, H.-U.: The consistency dimension
and distribution-dependent learning from queries. Theoretical Computer Science,
288(2):197–215, 2002. Algorithmic Learning Theory.

6. Balogh, J., Bollobás, B., and Morris, R.: Hereditary properties of combinatorial structures:
Posets and oriented graphs. Journal of Graph Theory, 56, 2007.

7. Balogh, J., Bollobás, B., and Morris, R.: Hereditary properties of tournaments. Electron.
J. Comb., 14, 2007.

8. Balogh, J., Bollobás, B., and Weinreich, D.: The speed of hereditary properties of graphs.
Journal of Combinatorial Theory, Series B, 79(2):131–156, 2000.

9. Balogh, J., Bollobás, B., and Weinreich, D.: The penultimate rate of growth for graph
properties. European Journal of Combinatorics, 22(3):277–289, 2001.

10. Balogh, J., Bollobás, B., and Weinreich, D.: A jump to the bell number for hereditary
graph properties. Journal of Combinatorial Theory, Series B, 95(1):29–48, 2005.

96

97

11. Bárány, V.: A hierarchy of automatic ω-words having a decidable mso the-
ory. RAIRO - Theoretical Informatics and Applications - Informatique Théorique
et Applications, 42(3):417–450, 2008.

12. Beame, P., Van den Broeck, G., Gribkoff, E., and Suciu, D.: Symmetric weighted first-
order model counting. In Proceedings of the 34th ACM SIGMOD-SIGACT-SIGAI
Symposium on Principles of Database Systems, PODS ’15, page 313–328, New
York, NY, USA, 2015. Association for Computing Machinery.

13. Bojańczyk, M., Klin, B., and Lasota, S.: Automata theory in nominal sets. Logical
Methods in Computer Science, Volume 10, Issue 3, August 2014.

14. Bollig, B., Habermehl, P., Kern, C., and Leucker, M.: Angluin-style learning of nfa. In
IJCAI, pages 1004–1009, 07 2009.

15. Bollobás, B. and Thomason, A.: Hereditary and Monotone Properties of Graphs, pages
70–78. Berlin, Heidelberg, Springer Berlin Heidelberg, 1997.

16. Bousquet, O., Hanneke, S., Moran, S., and Zhivotovskiy, N.: Proper learning, helly num-
ber, and an optimal svm bound. In Annual Conference Computational Learning
Theory, 2020.

17. Carton, O. and Thomas, W.: The monadic theory of morphic infinite words and general-
izations. In Mathematical Foundations of Computer Science 2000, eds, M. Nielsen
and B. Rovan, pages 275–284, Berlin, Heidelberg, 2000. Springer Berlin Heidelberg.

18. Chase, H. and Freitag, J.: Model theory and machine learning. The Bulletin of Symbolic
Logic, 25(3):319–332, 2019.

19. Chase, H. and Freitag, J.: Bounds in query learning. In Proceedings of Thirty Third
Conference on Learning Theory, eds, J. Abernethy and S. Agarwal, volume 125 of
Proceedings of Machine Learning Research, pages 1142–1160. PMLR, 2020.

20. Chase, H. S.: Model Theory and Machine Learning. PhD thesis, University of Illinois
Chicago, April 2020.

21. Dong, X. L., Gabrilovich, E., Heitz, G., Horn, W., Lao, N., Murphy, K., Strohmann, T.,
Sun, S., and Zhang, W.: Knowledge vault: A web-scale approach to probabilistic
knowledge fusion. In The 20th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’14, New York, NY, USA - August

98

24 - 27, 2014, pages 601–610, 2014. Evgeniy GabrilovichWilko HornNi LaoKevin
MurphyThomas StrohmannShaohua SunWei ZhangGeremy Heitz.

22. Dotson, R. and Nagle, B.: Hereditary properties of hypergraphs. Journal of Combinatorial
Theory, Series B, 99(2):460–473, 2009.

23. Drews, S. and D’Antoni, L.: Learning symbolic automata. In Tools and Algorithms for
the Construction and Analysis of Systems, eds, A. Legay and T. Margaria, pages
173–189, Berlin, Heidelberg, 2017. Springer Berlin Heidelberg.

24. Elgot, C. C. and Rabin, M.: Decidability and undecidability of extensions of second (first)
order theory of (generalized) successor. J. Symb. Log., 31:169–181, 1966.

25. Fisman, D. and Saadon, S.: Learning and characterizing fully-ordered lattice automata. In
Automated Technology for Verification and Analysis, eds, A. Bouajjani, L. Hoĺık,
and Z. Wu, pages 266–282, Cham, 2022. Springer International Publishing.

26. Gabbay, M. J. and Pitts, A. M.: A new approach to abstract syntax with variable binding.
Formal Aspects of Computing, 13(3):341–363, 07 2002.

27. Getoor, L. and Taskar, B.: Introduction to Statistical Relational Learning. The MIT Press,
2007.

28. Graedel, E., Kolaitis, P., and Vardi, M.: On the decision problem for two-variable first-order
logic. Bulletin of Symbolic Logic, 3, 01 2001.

29. Gribkoff, E., Van den Broeck, G., and Suciu, D.: Understanding the complexity of lifted
inference and asymmetric weighted model counting. ArXiv, abs/1405.3250, 2014.

30. Hanneke, S., Livni, R., and Moran, S.: Online learning with simple predictors and a
combinatorial characterization of minimax in 0/1 games. In COLT, 2021.

31. Hellerstein, L., Pillaipakkamnatt, K., Raghavan, V., and Wilkins, D.: How many queries
are needed to learn? J. ACM, 43(5):840–862, September 1996.

32. Kruckman, A., Rubin, S., Sheridan, J., and Zax, B.: A myhill-nerode theorem for automata
with advice. Electronic Proceedings in Theoretical Computer Science, 96, 10 2012.

33. Kuzelka, O.: Weighted first-order model counting in the two-variable fragment with count-
ing quantifiers. Journal of Artificial Intelligence Research, 70:1281–1307, 03 2021.

99

34. Laskowski, M. C.: Vapnik-chervonenkis classes of definable sets. Journal of The London
Mathematical Society-second Series, 45:377–384, 1992.

35. Laskowski, M. C.: Mutually algebraic structures and expansions by predicates. The Journal
of Symbolic Logic, 78(1):185–194, 2013.

36. Laskowski, M. C. and Terry, C.: Jumps in speeds of hereditary properties in finite relational
languages. Journal of Combinatorial Theory, Series B, 2022.

37. Littlestone, N.: Learning quickly when irrelevant attributes abound: A new linear-threshold
algorithm. In 28th Annual Symposium on Foundations of Computer Science (sfcs
1987), pages 68–77, 1987.

38. Lovász, L. and Szegedy, B.: Regularity Partitions and The Topology of Graphons, pages
415–446. Berlin, Heidelberg, Springer Berlin Heidelberg, 2010.

39. Malhotra, S. and Serafini, L.: Weighted model counting in fo2 with cardinality con-
straints and counting quantifiers: A closed form formula. Proceedings of the AAAI
Conference on Artificial Intelligence, 36:5817–5824, 06 2022.

40. Malliaris, M. and Moran, S.: The unstable formula theorem revisited via algorithms, 2023,
arXiv:2212.05050 [math.LO].

41. Malliaris, M. and Shelah, S.: Regularity lemmas for stable graphs. Transactions of the
American Mathematical Society, 366(3):1551–1585, 2014.

42. Moerman, J., Sammartino, M., Silva, A., Klin, B., and Szynwelski, M.: Learning nominal
automata. In Proceedings of the 44th ACM SIGPLAN Symposium on Principles
of Programming Languages, POPL 2017, page 613–625, New York, NY, USA, 2017.
Association for Computing Machinery.

43. Montanari, U. and Pistore, M.: History-Dependent Automata: An Introduction, pages 1–
28. Berlin, Heidelberg, Springer Berlin Heidelberg, 2005.

44. Nguyen, T., Scott, A., and Seymour, P.: Induced subgraph density. vi. bounded vc-
dimension, 2024, arXiv:2312.15572 [math.CO].

45. Nies, A.: Describing groups. The Bulletin of Symbolic Logic, 13(3):305–339, 2007.

100

46. Pitts, A. M.: Nominal Sets: Names and Symmetry in Computer Science. Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press, 2013.

47. Pyber, L.: Asymptotic results for permutation groups. In Groups And Computation, 1991.

48. Rabinovich, A. and Thomas, W.: Decidable theories of the ordering of natural numbers
with unary predicates. In Computer Science Logic, ed. Z. Ésik, pages 562–574,
Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

49. Raedt, L. D., Kersting, K., and Natarajan, S.: Statistical Relational Artificial Intelligence:
Logic, Probability, and Computation. Morgan & Claypool Publishers, 2016.

50. Richardson, M. and Domingos, P. M.: Markov logic networks. Machine Learning, 62:107–
136, 2006.

51. Sakakibara, Y.: Learning context-free grammars from structural data in polynomial time.
In Proceedings of the First Annual Workshop on Computational Learning Theory,
COLT ’88, page 330–344, San Francisco, CA, USA, 1988. Morgan Kaufmann Pub-
lishers Inc.

52. Salomaa, A.: On finite automata with a time-variant structure. Information and Control,
13(2):85–98, 1968.

53. Scheinerman, E. and Zito, J.: On the size of hereditary classes of graphs. Journal of
Combinatorial Theory, Series B, 61(1):16–39, 1994.

54. Tsankov, T.: The additive group of the rationals does not have an automatic presentation.
The Journal of Symbolic Logic, 76(4):1341–1351, 2011.

55. Tóth, J. and Kuželka, O.: Lifted inference with linear order axiom. Proceedings of the
AAAI Conference on Artificial Intelligence, 37:12295–12304, 06 2023.

56. Valiant, L. G.: The complexity of enumeration and reliability problems. SIAM J. Comput.,
8:410–421, 1979.

57. Van den Broeck, G.: On the completeness of first-order knowledge compilation for lifted
probabilistic inference. In Neural Information Processing Systems, 2011.

58. Van den Broeck, G., Meert, W., and Darwiche, A.: Skolemization for weighted first-
order model counting. In Proceedings of the Fourteenth International Conference

101

on Principles of Knowledge Representation and Reasoning, KR’14, page 111–120.
AAAI Press, 2014.

VITA

KEVIN ZHOU

EDUCATION

Aug 2024 Ph.D. in Pure Mathematics

University of Illinois Chicago, Chicago, IL

Advisor: James Freitag

May 2018 B.S. in Mathematical Sciences (with University Honors)

Carnegie Mellon University, Pittsburgh, PA

PAPERS

Kevin Zhou, Query learning bounds for advice and nominal automata, ATVA, to appear,

2024

Kevin Zhou, Hereditary properties and weighted model counting, in preparation

INVITED TALKS

Apr 2024 AMS Central Sectional Meeting | University of Wisconsin-Milwaukee

Apr 2024 UIC Logic Seminar | University of Illinois Chicago

Mar 2023 AMS Southeastern Sectional Meeting | Georgia Institute of Technology

Oct 2022 UIC Logic Seminar | University of Illinois Chicago

Apr 2022 ASL North American Annual Meeting | Cornell University

102

103

AWARDS & GRANTS

Spring 2022 UIC NSF TRIPODS Research Fellow

Summer 2019 UIC NSF RTG Pre-doctoral Fellow

TEACHING

As Primary Instructor:

MATH 090 Intermediate Algebra

MATH 179 ESP Workshop for Calculus I

MATH 294 ESP Workshop for Introduction to Advanced Mathematics

MATH 294 ESP for Abstract Algebra I

As Teaching Assistant:

MATH 090 Intermediate Algebra

MATH 110 College Algebra

MATH 125 Elementary Linear Algebra

MATH 180 Calculus I

MCS 260 Introduction to Computer Science

SERVICE

2023 Co-organizer, 23rd Graduate Student Conference in Logic

2021 – 2024 Co-organizer, UIC Louise Hay Logic Seminar (Graduate Logic Seminar)

2019 – 2020 Secretary, UIC Mathematics Graduate Students’ Association

	toI Introduction
	 Query learning of automata
	 Weighted model counting
	 The model theoretic perspective

	toII Preliminaries
	 Basic Notation
	 First-order logic
	 Query learning
	 Automata theory
	 Weighted Model Counting
	 Hereditary properties

	toIII Query Learning of Advice and Nominal Automata
	 Introduction
	 Learning advice DFAs
	 Overview of advice DFAs
	 Learning bound for advice DFAs

	 Learning nominal DFAs
	 Overview of nominal sets and DFAs
	 Auxiliary results on nominal sets and G-languages
	 Littlestone dimension of nominal DFAs
	 Consistency dimension of nominal DFAs
	 Learning bound for nominal DFAs

	toIV Hereditary Properties and Weighted First-order Model Counting
	 Introduction
	 Strictly r-ary relations
	 Weighted model counting for exponential growth rate classes
	 Weighted model counting for minimal fast-growth classes
	 The FO2 Case
	 Unweighted counting dichotomy for FO2
	 Weighted model counting for FO2

	to CITED LITERATURE
	to VITA

