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My research primarily concerns the interactions between mathematical logic, in particular model
theory, and aspects of computer science related to machine learning and artificial intelligence. My
Ph.D. thesis (available at https://kevinzhou96.github.io/thesis.pdf) consists of two projects:
new results in query learning of automata, and weighted first-order model counting.

1. Query Learning of Automata

This project appears in my thesis and will be published in the proceedings of the 22nd International
Symposium on Automated Technology for Verification and Analysis (ATVA 2024). My results
center around using a new method for proving upper bounds on the number of equivalence and
membership queries needed to learn in the setting of query learning in order to find new upper
bounds for the query complexity of two generalization of deterministic finite automata: advice
DFAs and nominal DFAs.

Query learning, sometimes known as active learning, is a setting of machine learning in which the
learner attempts to learn an unknown target function by interactively posing queries to an oracle.
Two common queries considered are equivalence queries and membership queries. In an equivalence
query, the learner submits a function as a hypothesis, succeeding if the hypothesis is equal to the
target, and to which the oracle responds with an input for which the hypothesis and target disagree
otherwise. In a membership query, the learner submits an element of the domain and the oracle
responds with the value of the target on that domain element.

Learning various forms of automata using queries is a long-studied field with many applications,
including in automatic verification and model checking. It was initiated by Angluin in 1987 with the
introduction of the L∗ algorithm which learns regular languages using equivalence and membership
queries, with the number of queries needed being upper bounded by a polynomial in the size of the
minimal DFA recognizing the language as well as the length of the longest counterexample given
to an equivalence query [1]. Angluin’s algorithm has been adapated to various other settings, such
as tree automata [12], nondeterministic finite automata [5], and ω-automata [2]. Recently, Chase
and Freitag applied ideas from model theory to develop a characterization of query learnability
in terms of finite Littlestone and consistency dimensions, as well as an polynomial upper bound
on query complexity based on those quantities [7]. This reflects similar equivalences such as that
between PAC-learnabilty and VC-dimension and between online learnability and finite Littlestone
dimension. In recent years, these equivalences have given rise to many fruitful interactions between
computational learning theory and model theory, starting with Laskowski’s observation in 1992 that
finite VC-dimension corresponds to the model-theoretic notion of NIP [9] and more recently with
Chase and Freitag’s observation that finite Littlestone dimension corresponds to model-theoretic
stability [6].

My work involves applying Chase and Freitag’s bounds to advice DFAs and nominal DFAs. Advice
DFAs [8] generalize classical DFAs with the addition of a fixed infinite-length advice string that
the automaton reads in parallel with the input string, and are useful in modeling situations where
the behavior of the automaton changes in a fixed way over time. By proving upper bounds on
the Littlestone dimension and consistency dimension of the class of languages recognized by advice
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DFAs, I gave the first known query learning bound for advice DFAs. A full statement of the result
is as follows: let Ladv

k (n,m) be the set of languages over an alphabet of size k recognized by an
advice DFA on at most n states, restricted to strings of length at most m.

Theorem 1. The (EQ+MQ)-query complexity of Ladv
k (n,m) with queries from Ladv

k (2n,m) is
O(n3mk log n).

Nominal DFAs, first introduced by Bojańczyk, Klin, and Lasota [4], generalize classical DFAs to
infinite alphabets and state sets. This is useful in settings where there are infinitely many options for
data values, such as in XML documents (where arbitrary strings can appear as attribute values) or
in software verification (in order to deal with pointers or arbitrary function parameters). However,
this generalization is highly nontrivial, since simply relaxing the “finite” restrictions in DFAs to
“infinite” results in cardinality issues which make computation intractable. To remedy this, nominal
DFAs impose constraints based on invariance under symmetries that reflect real-world operations
such as comparing data values for equality or under some linear order. As with nominal DFAs, I
prove an upper bound on the query complexity for nominal DFAs via Littlestone and consistency
dimensions. A full statement of the result requires several technical definitions, but is summarized
as follows: given a G-alphabet A, let Lnom

A (n, k) denote the set of G-languages recognized by a
nominal DFA whose state set has at most n orbits and has dimension at most k.

Theorem 2. For a fixed G-alphabet A, the (EQ+MQ)-query complexity of

Lnom
A (n, k) with queries from Lnom

A (n, k) is at most nO(k)

kk
.

Previous bounds on query complexity of nominal DFAs were obtained by Moerman et al. [11], who
developed a nominal version of Angluin’s L∗ algorithm. My result improves on this previous bound
with a better asymptotic dependence on n as well as removing dependence on the length of the
longest counterexample given to an equivalence query.

2. Weighted First-Order Model Counting

This project appears in my thesis, and studies interactions between model-theoretic combinatorics
and topics related to statistical relational learning.

The classic boolean SAT problem asks to determine whether or not there is an assignment of
Boolean variables that satisfies a given Boolean formula. It is a canonical NP-complete problem with
wide-ranging applications. The counting version of this problem, #SAT, asks how many distinct
assignments satisfy the formula, and is the starting point for various model counting problems. It
can be generalized by changing the underlying logic to first-order logic, as well as by giving a method
for assigning a weight to each structure and computing the weighted sum. These generalizations
form the basis for the weighted first-order model counting problem. Most existing work in this area
has focused on determining the computational complexity of computing the weighted first-order
model count for sentences falling into various fragments of first-order logic.

Weighted first-order model counting is closely related to problems in statistical relational learning,
in which one aims to model probabilistic relationships between objects which have a rich inter-
connected relational structure. Such problems occur in real-world knowledge bases which contain
millions or billions of rows of relational data, for which conducting probabilistic inference is an
intensive computational task. Weighted model counting provides a flexible framework for encoding
probabilistic queries and inference in such settings.

Independently of work on the weighted setting, the unweighted version of the first-order model
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counting problem has been extensively studied in the combinatorics literature. In particular, much
work has focused on understanding the asymptotic growth rates of hereditary properties of various
combinatorial objects, which are classes of objects that are defined by a universal theory. A typical
result proves a “jump” in the possible asymptotic growth rates, that is, showing that the number
of objects of size n must either be at most f(n) or at least g(n), where f(n) has strictly slower
asymptotic growth rate than g(n). The most general version of such a result was given by Laskowski
and Terry, who prove a complete classification of the jumps in growth rates of hereditary properties
of L-structures for any finite relational language L [10].

My work primarily involves unifying these two perspectives. Since the results on hereditary proper-
ties often involve strong structural characterizations of classes falling into the various growth rates,
one may hope that this can shed some light on the computational aspects of the weighted model
counting problem. In the other direction, restricting to the fragments of first-order logic studied in
weighted model counting may yield stronger classification results for unweighted model counting.

As an example of a result in the first direction, I showed that there is an explicit formula for the
weighted model count of sentences whose unweighted model count falls into the slowest possible
growth rate. While the exact statement of the theorem is fairly technical; however, it can be
summarized as follows:

Theorem 3 (informal). Let ϕ be a first-order sentence in a finite relational language whose un-
weighted model count is bounded by an exponential in the size of the domain. Then there are
parameters t,K, c1, . . . , ct ∈ N depending oonly on ϕ such that there is an exact formula for the
weighted model count of ϕ depending only on the parameters and the size of the domain.

In the opposite direction, one heavily-studied fragment of first-order logic is FO2, in which formulas
are only allowed to use at most two logical variables. The weighted model counting problem for
FO2 has been shown to be computable in polynomial time [13, 14, 3]. By analyzing their proof,
I derived a sharper dichotomy for the unweighted model count of FO2 sentences, summarized as
follows:

Theorem 4. Let ϕ be a universal FO2 sentence. Then the unweighted model count of ϕ is either
upper bounded by an exponential function or lower bounded by a function of the form 2Cn2

, where
n is the size of the domain and C is a constant.

This stands in contrast to Laskowski and Terry’s classification result, which has four possible growth
rates, the aforementioned two being the slowest and fastest possible.

3. Future Work

There is still much work to be done in both of these areas. In query learning of automata, it is worth
seeing if Chase and Freitag’s method of computing bounds for Littlestone and consistency dimension
can be applied to other settings of automata and how those results compare to other approaches
such generalizations of the L∗ algorithm. In weighted model counting, there is still opportunity to
understand how other parts of the unweighted growth classification can yield computational results
for the weighted model counting problem. Additionally, there are extensions of FO2, such as those
allowing for counting quantifiers or a linear order axiom, whose weighted model count problem
have also been shown to be computable in polynomial time. It would be of interest to see how
these fragments also relate to the classification of growth rates for the unweighted model counting
problem.
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